【總結(jié)】求遞推數(shù)列通項(xiàng)公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2024-10-19 20:27
【總結(jié)】求數(shù)列通項(xiàng)公式專題練習(xí)1、設(shè)是等差數(shù)列的前項(xiàng)和,已知與的等差中項(xiàng)是1,而是與的等比中項(xiàng),求數(shù)列的通項(xiàng)公式2、已知數(shù)列中,,前項(xiàng)和與的關(guān)系是,試求通項(xiàng)公式。3、已知數(shù)列中,,前項(xiàng)和與通項(xiàng)滿足,求通項(xiàng)的表達(dá)式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。
2025-03-25 02:52
【總結(jié)】......數(shù)列通項(xiàng)公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式
2025-08-03 23:50
【總結(jié)】數(shù)列通項(xiàng)公式、求和的常見題型一、定義法例題1:(1)在數(shù)列{}中,若,,則=等差數(shù)列定義:公差,=n+5(2)在數(shù)列{}中,若,, 則=等比數(shù)列定義:公差,練習(xí)若數(shù)列的遞推公式為,則求這個(gè)數(shù)列的通項(xiàng)公式。 ?。ǎ┒⒐椒ㄒ阎獢?shù)列的前項(xiàng)和與的關(guān)系,求數(shù)列的通項(xiàng)可用公式求解.例2.①
2025-06-26 05:29
【總結(jié)】等比、差數(shù)列前n項(xiàng)和的性質(zhì){an}為等比數(shù)列,Sn為其前n項(xiàng)和,則SK,S2K-SK,S3K-S2K,···仍構(gòu)成等比數(shù)列,且有(S2K-SK)2=SK·(S3K-S2K)例{an}中,S10=10,S20=30,求S30.例{an}中,S10=10,S20=30,求S30.{an}為等差
2025-04-30 18:12
【總結(jié)】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項(xiàng)重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對(duì)獨(dú)立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識(shí)主要涉及等差、等比數(shù)列的通項(xiàng)公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項(xiàng)公式是高中數(shù)學(xué)中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對(duì)等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競(jìng)賽和高考中.
2025-01-06 06:52
【總結(jié)】1.在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。2.已知數(shù)列中,,前項(xiàng)和與的關(guān)系是,試求通項(xiàng)公式。3.已知數(shù)的遞推關(guān)系為,且求通項(xiàng)。,,,,求。{}中且(),,求數(shù)列的通項(xiàng)公式。,其中是首項(xiàng)為1,公差為2的等差數(shù)列.求數(shù)列的通項(xiàng)公式;7.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d0,且第二項(xiàng)、第五項(xiàng)
2025-03-25 05:12
【總結(jié)】求通項(xiàng)公式專題一、利用與關(guān)系求1-1已知數(shù)列的前項(xiàng)和,求通項(xiàng)公式例1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)變式訓(xùn)練1 已知數(shù)列的前項(xiàng)和,求數(shù)列的通項(xiàng)公式(1).(2)1-2已知與的關(guān)系式,求例2 已知數(shù)列的前項(xiàng)和,求的通項(xiàng)公式..變式訓(xùn)練2已知數(shù)列的前項(xiàng)和滿足,求的通項(xiàng)公式..變式訓(xùn)練3
2025-03-25 02:53
【總結(jié)】用不動(dòng)點(diǎn)法求遞推數(shù)列(a2+c2≠0)的通項(xiàng)儲(chǔ)炳南(安徽省岳西中學(xué)246600)1.通項(xiàng)的求法為了求出遞推數(shù)列的通項(xiàng),我們先給出如下兩個(gè)定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動(dòng)點(diǎn)方程,其根稱為函數(shù)的不動(dòng)點(diǎn).下面分兩種情況給出遞推數(shù)列通項(xiàng)的求解通法.(1)當(dāng)c=0,時(shí),由,記,,則有(k≠0),∴數(shù)列
2025-06-23 14:23
【總結(jié)】高三數(shù)學(xué)組學(xué)習(xí)目標(biāo)?在了解數(shù)列概念的基礎(chǔ)上,掌握幾種常見遞推數(shù)列通項(xiàng)公式的求解方法?理解求通項(xiàng)公式的原理?體會(huì)各種方法之間的異同,感受事物與事物之間的相互聯(lián)系2021是這樣考的?1.(2021年高考新課標(biāo)1(理))若數(shù)列{an}的前n項(xiàng)和為Sn=,則數(shù)列{an}的通項(xiàng)公
2025-05-15 02:40
【總結(jié)】......求數(shù)列通項(xiàng)公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項(xiàng)公式。 解:兩邊除以,得,則,故數(shù)列是以為首項(xiàng),以為公差
【總結(jié)】數(shù)列通項(xiàng)公式的求法一、近6年全國(guó)卷(2009——2014)求數(shù)列通項(xiàng)公式的試題概覽年份試題特點(diǎn)或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國(guó)卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-06-26 05:32
【總結(jié)】數(shù)列通項(xiàng)的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點(diǎn),因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項(xiàng)往往是解題的突破口、關(guān)鍵點(diǎn)。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項(xiàng)之間的結(jié)構(gòu),縱向看各項(xiàng)與項(xiàng)數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡(jiǎn)單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05
【總結(jié)】課時(shí)序號(hào):36重點(diǎn):1、理解數(shù)列通項(xiàng)公式的意義,掌握等差、等比數(shù)列的通項(xiàng)公式的求法;2、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.3、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、輔助數(shù)列法等等難點(diǎn):1、根據(jù)數(shù)列的遞推公式構(gòu)造等差、等比數(shù)列求數(shù)列的通項(xiàng)公式.2、掌握數(shù)列通項(xiàng)公式的常用方法:公式法、累加法、累乘法、迭代