【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流三角變換與解三角形6.如右圖,設A,B兩點在河的兩岸,一測量者在A的同側(cè),在所在的河岸邊選定一點C,測出AC的距離為50m,45ACB???,105CAB???后,就可以計算出A,B兩點的距離為(其中2????,3????,精確到)
2025-08-13 20:09
【總結(jié)】復習:一正弦定理:在一個三角形中,各邊的長和它所對角的正弦的比相等,2sinsinsinabcRABC???(1)已知兩角和任意一邊,求其他兩邊和一角;變形:sinsin2sinsinsinbcaAARABC???解唯一?二
2025-08-05 03:12
【總結(jié)】八年級數(shù)學(下冊)第六章證明(一)5三角形內(nèi)角和定理的證明授課人:楊志軍?△ABC中,∠A=35°,∠C=90°,則∠B=______。?△ABC中,∠A:∠B:∠C=3:2:1,則△ABC是____三角形。?證明命題的一般步驟是:①————
2025-07-24 19:09
【總結(jié)】......1.(2013大綱)設的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設△的內(nèi)角所對的邊分別為,且
2025-06-18 18:56
【總結(jié)】要點疑點考點課熱身能力思維方法延伸拓展誤解分析第6課時三角形中的有關問題前要點要點穧疑點疑點穧考點考點1.正弦定理:(1)定理:a/sinA=b/sinB=c/sinC=2R(其中R為△ABC外接圓的半徑
2024-11-09 01:52
【總結(jié)】1、證明命題的一般步驟:回顧與思考?(1)根據(jù)題意,畫出圖形;(2)結(jié)合圖形,用符號語言寫出“已知”和“求證”;(3)依據(jù)思路,運用數(shù)學符號和數(shù)學語言條理清晰地寫出證明過程;2、平行線有什么性質(zhì)?定理:兩直線平行,同位角相等.定理:兩直結(jié)平行,內(nèi)錯角相等.定理:兩直線平行,同旁內(nèi)角互補.
2025-07-25 17:05
【總結(jié)】第十講解三角形ABCabc△ABC中:A+B+C=?(1)(2)22CBA????22C???(3)BAbaBAsinsin?????RCcBbAa2sinsinsin???正弦定理:??
2025-08-05 17:10
【總結(jié)】專題:相似三角形定理與圓冪定理本專題主要復習相似三角形的進一步認識、圓的進一步的認識.通過本專題的復習,了解平行線等分線段定理和平行截割定理;掌握相似三角形的判定定理及性質(zhì)定理;理解直角三角形射影定理.理解圓周角定理及其推論;掌握圓的切線的判定定理及性質(zhì)定理;理解弦切角定理及其推論.掌握相交弦定理、割線定理、切割線定理;理解圓內(nèi)接四邊形的性質(zhì)定理與判定定理.【知識要點】1.相似三
2025-06-24 06:54
【總結(jié)】第一頁,編輯于星期六:點二十九分。,第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理,第二頁,編輯于星期六:點二十九分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點二十九分。,...
2024-10-22 18:39
【總結(jié)】.1.(2013大綱)設的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設△的內(nèi)角所對的邊分別為,且,,.(Ⅰ)求的值;(Ⅱ)求的值.4.(2013湖北)在中,角,,對應的邊分別是,,.已知.(I)求角的大小;(II)若的面積,
2025-08-05 17:24
【總結(jié)】解三角形題型總結(jié)中的常見結(jié)論和定理:一、內(nèi)角和定理及誘導公式:1.因為,所以;;因為所以,,…………2.大邊對大角△ABC中,熟記并會證明tanA+tanB+tanC=tanA·tanB·tanC;(2)A、B、C成等差數(shù)列的充要條件是B=60°;(3)△ABC是正三角形的充要條件是A、B、C成等差
2025-03-25 07:46
【總結(jié)】的應用解三角形問題是三角學的基本問題之一。什么是三角學?三角學來自希臘文“三角形”和“測量”。最初的理解是解三角形的計算,后來,三角學才被看作包括三角函數(shù)和解三角形兩部分內(nèi)容的一門數(shù)學分學科。解三角形的方法在度量工件、測量距離和高度及工程建筑等生產(chǎn)實際中,有廣泛的應用,在物理學中,有關向量的計算也要用到解三角形的方法。
2024-11-10 01:32
【總結(jié)】解三角形知識點總結(jié)及題型分類講解一、知識點復習1、正弦定理及其變形2、正弦定理適用情況:(1)已知兩角及任一邊(2)已知兩邊和一邊的對角(需要判斷三角形解的情況)已知a,b和A,求B時的解的情況:如果,則B有唯一解;如果,則B有兩解;如果,則B有唯一解;如果,則B無解.3、余弦定理及其推論4、余弦定理適
【總結(jié)】?1.1正弦定理一、正弦定理1.在一個三角形中,各邊和它所對角的正弦的比相等,即①________=2R(其中R是△ABC外接圓的半徑).2.正弦定理的三種變形(1)a=2RsinA,②________,c=2RsinC;(2)③________,s
2024-11-12 17:10
【總結(jié)】解三角形應用舉例基礎知識梳理1.有關概念(1)仰角與俯角:與目標視線在同一鉛垂平面內(nèi)的水平視線和目標視線的夾角.目標視線在水平視線上方時叫,目標視線在水平視線下方時叫.仰角俯角如圖所示.基礎知識梳理(2)方位角:從正方向沿順時針到目標方向線
2025-08-05 16:02