【總結(jié)】歡迎交流唯一QQ1294383109希望大家互相交流三角變換與解三角形6.如右圖,設(shè)A,B兩點(diǎn)在河的兩岸,一測量者在A的同側(cè),在所在的河岸邊選定一點(diǎn)C,測出AC的距離為50m,45ACB???,105CAB???后,就可以計(jì)算出A,B兩點(diǎn)的距離為(其中2????,3????,精確到)
2024-08-22 20:09
【總結(jié)】復(fù)習(xí):一正弦定理:在一個(gè)三角形中,各邊的長和它所對角的正弦的比相等,2sinsinsinabcRABC???(1)已知兩角和任意一邊,求其他兩邊和一角;變形:sinsin2sinsinsinbcaAARABC???解唯一?二
2024-08-14 03:12
【總結(jié)】八年級數(shù)學(xué)(下冊)第六章證明(一)5三角形內(nèi)角和定理的證明授課人:楊志軍?△ABC中,∠A=35°,∠C=90°,則∠B=______。?△ABC中,∠A:∠B:∠C=3:2:1,則△ABC是____三角形。?證明命題的一般步驟是:①————
2025-07-24 19:09
【總結(jié)】......1.(2013大綱)設(shè)的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設(shè)△的內(nèi)角所對的邊分別為,且
2025-06-18 18:56
【總結(jié)】要點(diǎn)疑點(diǎn)考點(diǎn)課熱身能力思維方法延伸拓展誤解分析第6課時(shí)三角形中的有關(guān)問題前要點(diǎn)要點(diǎn)穧疑點(diǎn)疑點(diǎn)穧考點(diǎn)考點(diǎn)1.正弦定理:(1)定理:a/sinA=b/sinB=c/sinC=2R(其中R為△ABC外接圓的半徑
2024-11-09 01:52
【總結(jié)】1、證明命題的一般步驟:回顧與思考?(1)根據(jù)題意,畫出圖形;(2)結(jié)合圖形,用符號語言寫出“已知”和“求證”;(3)依據(jù)思路,運(yùn)用數(shù)學(xué)符號和數(shù)學(xué)語言條理清晰地寫出證明過程;2、平行線有什么性質(zhì)?定理:兩直線平行,同位角相等.定理:兩直結(jié)平行,內(nèi)錯(cuò)角相等.定理:兩直線平行,同旁內(nèi)角互補(bǔ).
2025-07-25 17:05
【總結(jié)】第十講解三角形ABCabc△ABC中:A+B+C=?(1)(2)22CBA????22C???(3)BAbaBAsinsin?????RCcBbAa2sinsinsin???正弦定理:??
2024-08-14 17:10
【總結(jié)】專題:相似三角形定理與圓冪定理本專題主要復(fù)習(xí)相似三角形的進(jìn)一步認(rèn)識、圓的進(jìn)一步的認(rèn)識.通過本專題的復(fù)習(xí),了解平行線等分線段定理和平行截割定理;掌握相似三角形的判定定理及性質(zhì)定理;理解直角三角形射影定理.理解圓周角定理及其推論;掌握圓的切線的判定定理及性質(zhì)定理;理解弦切角定理及其推論.掌握相交弦定理、割線定理、切割線定理;理解圓內(nèi)接四邊形的性質(zhì)定理與判定定理.【知識要點(diǎn)】1.相似三
2025-06-24 06:54
【總結(jié)】第一頁,編輯于星期六:點(diǎn)二十九分。,第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理,第二頁,編輯于星期六:點(diǎn)二十九分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)二十九分。,...
2024-10-22 18:39
【總結(jié)】.1.(2013大綱)設(shè)的內(nèi)角的對邊分別為,.(I)求(II)若,求.2.(2013四川)在中,角的對邊分別為,且.(Ⅰ)求的值;(Ⅱ)若,,求向量在方向上的投影.3.(2013山東)設(shè)△的內(nèi)角所對的邊分別為,且,,.(Ⅰ)求的值;(Ⅱ)求的值.4.(2013湖北)在中,角,,對應(yīng)的邊分別是,,.已知.(I)求角的大小;(II)若的面積,
2024-08-14 17:24
【總結(jié)】解三角形題型總結(jié)中的常見結(jié)論和定理:一、內(nèi)角和定理及誘導(dǎo)公式:1.因?yàn)?,所以;;因?yàn)樗?,,………?.大邊對大角△ABC中,熟記并會證明tanA+tanB+tanC=tanA·tanB·tanC;(2)A、B、C成等差數(shù)列的充要條件是B=60°;(3)△ABC是正三角形的充要條件是A、B、C成等差
2025-03-25 07:46
【總結(jié)】的應(yīng)用解三角形問題是三角學(xué)的基本問題之一。什么是三角學(xué)?三角學(xué)來自希臘文“三角形”和“測量”。最初的理解是解三角形的計(jì)算,后來,三角學(xué)才被看作包括三角函數(shù)和解三角形兩部分內(nèi)容的一門數(shù)學(xué)分學(xué)科。解三角形的方法在度量工件、測量距離和高度及工程建筑等生產(chǎn)實(shí)際中,有廣泛的應(yīng)用,在物理學(xué)中,有關(guān)向量的計(jì)算也要用到解三角形的方法。
2024-11-10 01:32
【總結(jié)】解三角形知識點(diǎn)總結(jié)及題型分類講解一、知識點(diǎn)復(fù)習(xí)1、正弦定理及其變形2、正弦定理適用情況:(1)已知兩角及任一邊(2)已知兩邊和一邊的對角(需要判斷三角形解的情況)已知a,b和A,求B時(shí)的解的情況:如果,則B有唯一解;如果,則B有兩解;如果,則B有唯一解;如果,則B無解.3、余弦定理及其推論4、余弦定理適
【總結(jié)】?1.1正弦定理一、正弦定理1.在一個(gè)三角形中,各邊和它所對角的正弦的比相等,即①________=2R(其中R是△ABC外接圓的半徑).2.正弦定理的三種變形(1)a=2RsinA,②________,c=2RsinC;(2)③________,s
2024-11-12 17:10
【總結(jié)】解三角形應(yīng)用舉例基礎(chǔ)知識梳理1.有關(guān)概念(1)仰角與俯角:與目標(biāo)視線在同一鉛垂平面內(nèi)的水平視線和目標(biāo)視線的夾角.目標(biāo)視線在水平視線上方時(shí)叫,目標(biāo)視線在水平視線下方時(shí)叫.仰角俯角如圖所示.基礎(chǔ)知識梳理(2)方位角:從正方向沿順時(shí)針到目標(biāo)方向線
2024-08-14 16:02