【總結】勾股定理的有關證明勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方a2+b2=c2b2a211美麗的勾股樹2020年,在北京舉行的國際數(shù)學家大會會標趙爽的“弦圖”早在公元3世紀,我國數(shù)學家趙爽就用左邊的圖形驗證了“勾股定理”
2025-11-02 23:17
【總結】第十七章 勾股定理 17.1 勾股定理 第1課時 勾股定理(1) 了解勾股定理的發(fā)現(xiàn)過程,理解并掌握勾股定理的內(nèi)容,會用面積法證明勾股定理,能應用勾股定理進行簡單的計算. 重點 勾股定理的內(nèi)...
2025-10-04 12:33
【總結】考拉,讓您的孩子更聰明地學習!老師姓名王志威學生姓名上課時間學科名稱數(shù)學年級八年級備注【課題名稱】八上數(shù)學《勾股定理》【考綱解讀】;,并且會熟練地運用勾股數(shù);,解決實際問題?!究键c梳理】考點1:勾股定理(1)勾股定理:直角三角
2025-04-04 03:28
【總結】勾股定理的逆定理學習目標:,掌握直角三角形判別思想,培養(yǎng)數(shù)學思維以及合情推理意識,感悟勾股定理和逆定理的應用價值學習重點:會應用勾股逆定理解決實際問題學習難點:直角三角形判別條件的探究過程學習過程:一、預習·質疑Rt△ABC中,∠C=900,a=6,b=8,c=_________,:作
2024-12-08 00:25
【總結】八年級數(shù)學勾股定理練習:(1)在△ABC中,∠C=Rt∠.若a=2,b=3則c=若a=5,c=b=.若c=61,b=a=.若a∶c=3∶5且c=20則b=.若∠A=60°且AC=7cm則AB=cm,BC=cm.(2)直角三角形一條直角邊與斜
2025-11-02 05:00
【總結】八年級培優(yōu)班勾股定理【知識要點】1、勾股定理是:直角三角形兩直角邊的平方和等于斜邊的平方,即:2、勾股定理逆定理:如果三角形的三邊長a、b、c滿足那么這個三角形是直角三角形?!镜湫土曨}】例1、如圖,有一塊直角
【總結】人教版八年級(下)數(shù)學單元評估題(八)第十八章勾股定理(18.2勾股定理的逆定理)班級姓名號次一.選擇題(本題有10小題,每題3分,共30分)△ABC中,的對邊分別為,且,則(),下列三角形中是直角三角形的是(
2025-01-14 13:32
【總結】第18章 勾股定理 勾股定理的逆定理 勾股定理的逆定理 勾股定理的逆定理目標突破目標突破總結反思總結反思第18章 勾股定理知識目標知識目標知識目標知識目標 勾股定理的逆定理目標突破目標突破目標一 會利用勾股定理的逆定理證明三角形是直角三角形 勾股定理的逆定理 勾股定理的逆定理 勾股定理的逆定理 勾股定理的逆定理目標二 會判斷一組
2025-06-20 12:03
2025-10-31 21:05
【總結】 勾股定理的逆定理學前溫故新課早知 的三角形,叫做直角三角形.?:如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么 .?90°a2+b2=c2學前溫故新課早知:如果三角形的三邊長a,b,c滿足 ,那么這個三角形是直角三角形.?△
2025-06-15 12:01
【總結】勾股定理的逆定理學前溫故新課早知的三角形,叫做直角三角形.:如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么.90°a2+b2=c2學前溫故新課早知:如果三角形的三邊長a,b,c滿足,那么這個三角形是直角三角形.△ABC的三邊分別為
2025-06-12 03:25
【總結】?據(jù)說古埃及人用下圖的方法畫直角:把一根長繩打上等距離的13個結,然后以3個結、4個結、5個結的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角.你知道為什么嗎?課前引入畫圖:畫出邊長分別是下列各組數(shù)的三角形。(單位:厘米)A:3、4、3;B:3、4、5;C:3、4、6;D:5、12、13
2024-12-08 04:34
【總結】勾股定理的逆定理如果兩個命題的和正好相反,那么這樣的兩個命題叫做互逆命題.如果把其中的一個叫做,那么另一個叫做它的.一般地,如果一個定理的經(jīng)過證明是正確的,那么它也是一個定理,稱這兩個定理互為.題設結論原命題逆命題逆命題
2025-06-12 12:26
【總結】第18章勾股定理知識點1勾股定理的逆定理,不能作為直角三角形的三邊邊長的是(A),4,6,24,25,15,17,12,15(C)①若∠A∶∠B∶∠C=1∶1∶2,則△ABC是直角三角形;②若∠A-∠B=∠C,則△ABC是直角三角形;③若三角形的三邊長分別為
2025-06-17 16:50
【總結】圖第十七章勾股定理勾股定理的逆定理(1)【教學目標】知識與技能體會勾股定理的逆定理得出過程,掌握勾股定理的逆定理。過程與方法探究勾股定理的逆定理的證明方法。情感、態(tài)度與價值觀理解原命題、逆命題、逆定理的概念及關系?!窘虒W重難點】重點:掌握勾股定理的逆定理及簡單應用。難點:勾股定理的逆定
2024-12-09 12:23