【總結(jié)】1-1
2025-01-09 08:40
【總結(jié)】習題1—1解答1.設(shè),求解;2.設(shè),證明:3.求下列函數(shù)的定義域,并畫出定義域的圖形:(1)(2)(3)(4)yx11-1-1O解(1)yx11-1-1O(2)yx-a-bcOzab
2025-06-20 03:33
【總結(jié)】第三部分不定積分第32頁共32頁[選擇題]容易題1—60,中等題61—105,難題106—122.1.設(shè),則().(A).;(B).(C).(D)..答C2.設(shè),則()。(A).(B).(C).(D).
2025-03-25 01:57
【總結(jié)】習題課(多元函數(shù)極限、連續(xù)、可微及偏導(dǎo))一.累次極限與重極限=,證明:,而二重極限不存在。一般結(jié)論:重極限與累次極限沒有關(guān)系重極限與累次極限均存在,則有=均存在但不等,不存在二.多元函數(shù)的極限與連續(xù),連續(xù)函數(shù)性質(zhì)求下列極限:(1);(2);(3); (4); (5)。證明:極
【總結(jié)】1-11.(1)[-3,3];(2)(-∞,0)∪(2,+∞);(3)(-2,1);(4)(-1.01,-1)∪(-1,0.99)2.(1)[-1,0)∪(0,1);(2)(1,2];(3)[-6,1).3.(1)(-∞,1)∪
2025-01-09 19:52
【總結(jié)】,并指出哪些方程是線性微分方程:(1)(2)(3)(4)解(1)1階非線性(2)1階線性(3)3階線性(4)1階線性(1)(2)(C為任意常數(shù))(3)(C為任意常數(shù))(4)(C1,C2為任意常數(shù))(5)(C為任意常數(shù))
2025-06-20 05:05
【總結(jié)】微積分IA總復(fù)習函數(shù)與極限一、主要內(nèi)容函數(shù)的定義反函數(shù)隱函數(shù)反函數(shù)與直接函數(shù)之間關(guān)系基本初等函數(shù)復(fù)合函數(shù)初等函數(shù)函數(shù)的性質(zhì)單值與多值奇偶性單調(diào)性有界性周期性雙曲函數(shù)與反雙曲函數(shù)函數(shù)的分類函數(shù)
2025-03-21 21:35
【總結(jié)】特點:)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問題如何提高精度?如何估計誤差?xx的一次多項式
2025-08-01 16:25
【總結(jié)】1微積分基本公式問題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運動中路
2025-02-21 10:32
【總結(jié)】第一節(jié)數(shù)列極限的定義和性質(zhì)一、數(shù)列極限的定義定義:依次排列的一列數(shù)??,,,,21nxxx稱為無窮數(shù)列,簡稱數(shù)列,記為}{nx.其中的每個數(shù)稱為數(shù)列的項,nx稱為通項(一般項).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-19 08:23
【總結(jié)】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因為古歐洲人喜歡用石子來幫助計算,所以calculus被引申作計算的意思。?現(xiàn)時醫(yī)學上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個中文詞,最早見諸清代數(shù)學家李善蘭和英國
2025-09-20 08:13
【總結(jié)】聊聊天微積分的產(chǎn)生——17、18、19世紀的微積分.很久很久以前,在很遠很遠的一塊古老的土地上,有一群智者……開普勒、笛卡爾、卡瓦列里、費馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開端,幾乎都是極不完美的嘗試,
2025-08-01 15:02
【總結(jié)】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】第二節(jié)求導(dǎo)法則一、和、差、積、商的求導(dǎo)法則定理并且可導(dǎo)處也在點分母不為零們的和、差、積、商則它處可導(dǎo)在點如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39
【總結(jié)】§數(shù)列極限第二章極限與連續(xù)本章是微積分的基礎(chǔ),主要討論函數(shù)的極限與函數(shù)的連續(xù)性。??,,,,,321naaaa稱為數(shù)列,記為na其中稱為數(shù)列的通項或一般項;??na正整數(shù)n稱為的下標。na例如:;,2,,8,4,2??n}2{n;,1,,1,1,1
2025-08-05 06:53