【總結】:★★★★★知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內一個動點到兩個定點、的距離之和等于常數,這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標準方程(端點為a、b,焦點為c)(1)當焦點在軸上時,橢圓的標準方程:,其中;(2)當焦點
2025-05-31 08:15
【總結】容城中學曹靜寧圖形標準方程焦點坐標準線方程范圍對稱軸頂點離心率y2=2pxy2=-2pxx2=2pyx2=-2py)0,2(pF)0,2pF(-)2,0(pF)2,0(pF-2=px-2=px2=
2024-11-09 03:52
【總結】課時作業(yè)(十三)一、選擇題1.已知點P(6,y)在拋物線y2=2px(p0)上,若點P到拋物線焦點F的距離等于8,則焦點F到拋物線準線的距離等于( )A.2B.1C.4D.8【解析】 拋物線y2=2px(p0)的準線為x=-,因為P(6,y)為拋物線上的點,所以點P到焦點F的距離等于它到準線的距離,所以6+=8,所以p=4,即焦點F到拋物線的距離
2025-03-25 02:27
【總結】2020/12/19拋物線的幾何性質2020/12/19結合拋物線y2=2px(p0)的標準方程和圖形,探索其的幾何性質:(1)范圍(2)對稱性(3)頂點類比探索x≥0,y∈R關于x軸對稱,對稱軸又叫拋物線的軸.拋物線和它的軸的交點.2020/12/19(4)離心率
2024-11-12 17:11
【總結】東莞市樟木頭中學李鴻艷xyOKHFMl目標掌握拋物線的定義、標準方程、幾何圖形,能夠求出拋物線的方程,能夠解決簡單的實際問題..重點拋物線的方程的四種形式及應用.難點拋物線標準方程的推導過程.1、拋物線的定義,代數表達式,標準方程。2.前面我們學習了橢圓、雙曲線的哪些幾何性質?
2024-11-16 21:23
【總結】拋物線標準方程及幾何性質問題情境拋物線的生活實例拋球運動平面內與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。一、定義的軌跡是拋物線。則點若MMNMF,1?即:︳︳︳︳··FMlN定點F叫做拋物線的焦
2025-08-15 22:22
【總結】1直線和拋物線的位置關系有哪幾種?直線和拋物線有兩個公共點,或一個公共點(直線和拋物線的對稱軸平行或重合).相切:相離:相交:直線和拋物線有且只有一個公共點,且直線和拋物線的對稱軸不平行也不重合.直線和拋物線沒有公共點.1直線和拋物線的位置關系有哪幾種?L1O
2024-11-10 21:42
【總結】復習課:拋物線主講:施海鵬作者:施海鵬高中數學課件網拋物線定義:平面內與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。點F叫做拋物線的焦點,直線L叫做拋物線的準線。拋物線拋物線的焦點拋物線的準線即比值為1l┑Fp作者:施海鵬高中數學課件網
2024-11-09 06:22
【總結】......拋物線練習題一、選擇題1.(2014·重慶高考文科·T8)設分別為雙曲線的左、右焦點,雙曲線上存在一點使得則該雙曲線的離心率為()A.B.C.D.【解題提
【總結】......拋物線及其標準方程一、選擇題1.已知點,的焦點是,是上的動點,為使取得最小值,則點坐標為()A.B.C.D.2.若拋物線上有一條長為6的動弦,則的中點到軸的最
2025-07-14 22:04
【總結】掌握拋物線的幾何性質,特別是拋物線的特殊點、特殊線的特征及其內在聯系.掌握拋物線的定義及其標準方程,鞏固掌握應用拋物線的定義分析解決問題的一般方法.掌握拋物線的知識結構,明確其重點是直線與拋物線的位置關系.復習目標拋物線拋物線的定義拋物線的標準方程
2024-11-17 19:45
【總結】2020/12/16拋物線的幾何性質范圍對稱性頂點離心率基本元素2020/12/16平面內與一個定點F和一條定直線l的距離相等的點的軌跡叫做拋物線。定點F叫做拋物線的焦點。定直線l叫做拋物線的準線。一、拋物線的定義即:︳︳︳︳·
2024-11-09 09:20
【總結】一、復習⒈焦點弦的定義⒉焦半徑公式⒊通徑20px?pHH2||21?若M在焦點為F的拋物線上,)0(22??ppxy),(00yx則|MF|=OxyFM2px??Oxy
2024-11-09 01:54
【總結】第2課時§結識拋物線教學目標1、經歷探索二次函數2xy?的圖象的作法和性質的過程,獲得利用圖象研究函數性質的經驗2、經歷探索二次函數2xy?的圖象的作法和性質的過程,獲得利用圖象研究函數性質的經驗3、能夠利用描點法作出2xy?的圖象,并能根據圖象認識和理解二次函數表達式與圖象之間的聯系教學重
2024-11-24 22:06
【總結】知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內一個動點到兩個定點、的距離之和等于常數,這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標準方程(端點為a、b,焦點為c)(1)當焦點在軸上時,橢圓的標準方程:,其中;(2)當焦點在軸上
2025-07-25 00:12