freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理全章知識點總結(jié)大全(已修改)

2025-07-04 19:16 本頁面
 

【正文】 全國中考信息資源門戶網(wǎng)站 勾股定理全章知識點總結(jié)大全一.基礎(chǔ)知識點:1:勾股定理  直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)  要點詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,則,)(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以證明線段平方關(guān)系的問題2:勾股定理的逆定理如果三角形的三邊長:a、b、c,則有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。要點詮釋:勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時應(yīng)注意:(1)首先確定最大邊,不妨設(shè)最長邊長為:c;(2)驗證c2與a2+b2是否具有相等關(guān)系,若c2=a2+b2,則△ABC是以∠C為直角的直角三角形(若c2a2+b2,則△ABC是以∠C為鈍角的鈍角三角形;若c2a2+b2,則△ABC為銳角三角形)。(定理中,及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長,滿足,那么以,為三邊的三角形是直角三角形,但是為斜邊)3:勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理;聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反,都與直角三角形有關(guān)。4:互逆命題的概念  如果一個命題的題設(shè)和結(jié)論分別是另一個命題的結(jié)論和題設(shè),這樣的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。5:勾股定理的證明 勾股定理的證明方法很多,常見的是拼圖的方法 用拼圖的方法驗證勾股定理的思路是①圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見方法如下:方法一:,化簡可證.方法二:四個直角三角形的面積與小正方形面積的和等于大正方形的面積.四個直角三角形的面積與小正方形面積的和為  大正方形面積為 所以方法三:,化簡得證6:勾股數(shù)?、倌軌驑?gòu)成直角三角形的三邊長的三個正整數(shù)稱為勾股數(shù),即中,,為正整數(shù)時,稱,為一組勾股數(shù)②記住常見的勾股數(shù)可以提高解題速度,如;;;等③用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))二、規(guī)律方法指導(dǎo)1.勾股定理的證明實際采用的是圖形面積與代數(shù)恒等式的關(guān)系相互轉(zhuǎn)化證明的。2.勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。3.勾股定理在應(yīng)用時一定要注意弄清誰是斜邊誰直角邊,這是這個知識在應(yīng)用過程中易犯的主要錯誤。4. 勾股定理的逆定理:如果三角形的三條邊長a,b,c有下列關(guān)系:a2+b2=c2,那么這個三角形是直角三角形;該逆定理給出判定一個三角形是否是直角三角形的判定方法.5.應(yīng)用勾股定理的逆定理判定一個三角形是不是直角三角形的過程主要是進行代數(shù)運算,通過學(xué)習(xí)加深對“數(shù)形結(jié)合”的理解.我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)勾股定理典型例題及專項訓(xùn)練專題一:直接考查勾股定理及逆定理,.?、乓阎蟮拈L ⑵已知,求的長分析: 練習(xí):如圖所示,在四邊形ABCD中,BAD=,DBC=,AD=3,AB=4,BC=12,求CD。2.已知等腰三角形腰長是10,底邊長是16,求這個等腰三角形的面積。已知:如圖,∠B=∠D=90176。,∠A=60176。,AB=4,CD=2。求:四邊形ABCD的面積。例2:已知直角三角形的兩邊長分別為5和12,求第三邊。練習(xí):在ABC中,AB=13,AC=15,高AD=12,則BC的長為多少?例3:(1).已知ABC的三邊、滿足,則ABC為 三角形(2).在ABC中,若=(+)(),則ABC是
點擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1