【正文】
淺談分塊矩陣的應用摘要:分塊矩陣是在處理一些階數(shù)較高的矩陣時所采用的一種方法,即把一個大矩陣看成由一些小矩陣構成,就如矩陣由數(shù)構成一樣。特別在運算中把這些小矩陣當成數(shù)來處理,這就是所謂的分塊矩陣。通過這樣的一種技巧,為計算一些高階矩陣時節(jié)省時間,讓計算過程更加簡潔。本文詳細、全面論述證明了矩陣的分塊在高等代數(shù)中的應用,包括用分塊矩陣求逆矩陣的問題,用分塊矩陣求矩陣行列式,用分塊矩陣求秩問題。關鍵詞:分塊矩陣;逆矩陣;行列式The application of partitioned matrixAbstract: In dealing with some higher order matrix, it will be divided into several small matrixes, which constitutes a simple matrix. Especially in these small matrixes putation as to handle, we called it the partitioned matrix. Through such a skill, to calculate some high order matrix to save time, let calculation process more concise. This paper listed some examples, and proves the partitioned matrix in higher algebra, including the application with the partitioned matrix inverse matrix, with the partitioned matrix for matrix determinant, use the partitioned matrix to solve the matrix’s rank.keywords: partitioned matrix;invers