【總結(jié)】高考數(shù)列通項公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項公式的方法……………………………………………………………12求通項公式方法選擇策略…………………………………………………123求通項公式注意的問題………………………………………………………13參考文獻…………………………………………………………………
2025-04-17 13:06
【總結(jié)】本科生畢業(yè)論文(設(shè)計)題目:構(gòu)造法在求數(shù)列通項公式中的應(yīng)用系別:數(shù)學(xué)與計算機科學(xué)系專業(yè)班級:數(shù)學(xué)與應(yīng)用數(shù)學(xué)2021級安順學(xué)院本科生畢業(yè)論文(設(shè)
2025-03-04 18:57
【總結(jié)】本科生畢業(yè)論文(設(shè)計)題目:構(gòu)造法在求數(shù)列通項公式中的應(yīng)用系別:數(shù)學(xué)與計算機科學(xué)系專業(yè)班級:數(shù)學(xué)與應(yīng)用數(shù)學(xué)2009級安順學(xué)院本科生畢業(yè)論文(設(shè)計)原創(chuàng)性申明本人鄭重申明:所呈交的論文(設(shè)計)是本
2025-06-25 14:21
【總結(jié)】數(shù)列通項公式解法總結(jié)及習(xí)題訓(xùn)練(附答案):①等差數(shù)列通項公式;②等比數(shù)列通項公式。:已知(即)求,用作差法:nS12()naf???na。?1,()na???:已知求,用作商法:。12()nfA?n(1),2)nfn???????:若求:。1()naf???na1221()()(nnaaa??????(:已知求,用累乘法:。1)f?
2025-06-26 05:20
【總結(jié)】數(shù)列通項及求和一.選擇題:{an}滿足a1=1,且,且n∈N),則數(shù)列{an}的通項公式為(??)A.??B.C.a(chǎn)n=n+2???D.a(chǎn)n=(n+2)·3n,,則數(shù)列的通項公式是(?)A.????
2025-06-26 05:42
【總結(jié)】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項與前一項的差an-an-1為常數(shù)d數(shù)列{an}的后一項與前一項的比為常數(shù)q(q≠0)專有名詞d為公差q為公比通項公式an=a1+(n-1)d
2025-04-17 01:43
【總結(jié)】《數(shù)列》練習(xí)題姓名_________班級___________一、選擇題(本大題共10個小題,每小題4分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的)21·世紀(jì)*教育網(wǎng)1.等差數(shù)列-,0,,…的第15項為( )A.11 B.12C.13 D.142.若在數(shù)列{an}中,a1=1,an+1=a-1(n∈N*),則a1+a2+a3
2025-06-25 02:13
【總結(jié)】新夢想教育數(shù)列求和的基本方法和技巧利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、自然數(shù)列4、自然數(shù)平方組成的數(shù)列[例1]已知,求的前n項和.解:由由等比
2025-04-17 08:19
2025-06-26 05:24
【總結(jié)】......環(huán)球雅思學(xué)科教師輔導(dǎo)學(xué)案輔導(dǎo)科目:數(shù)學(xué)年級:高一學(xué)科教師:課時數(shù):3授課類型等差數(shù)列與通項公式教學(xué)目的掌
2025-06-25 04:00
【總結(jié)】等差數(shù)列的通項公式及應(yīng)用習(xí)題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項為-3,-1,1,則數(shù)列的第50項為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項為2,末項為62,公差為4,則這
2025-03-25 06:56
【總結(jié)】.等差數(shù)列的通項公式及應(yīng)用習(xí)題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項為-3,-1,1,則數(shù)列的第50項為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項為2,末項為62,公差為4
2025-07-25 04:57
【總結(jié)】等差數(shù)列求和引例:計算1+2+3+4+……+97+98+99+100一、有關(guān)概念:像1、2、3、4、5、6、7、8、9、……這樣連起來的一串?dāng)?shù)稱為數(shù)列;數(shù)列中每一個數(shù)叫這個數(shù)列的一項,排在第一個位置的叫首項,第二個叫第二項,第三個叫第三項,……,最后一項又叫末項;共有多少個數(shù)又叫項數(shù);如果一個數(shù)列,從第二項開始,每一項與前一項之差都等于一個固定的數(shù),我們就叫做等差數(shù)列。這個固定的數(shù)就
【總結(jié)】......數(shù)列通項公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式
2025-08-03 23:50
【總結(jié)】用不動點法求遞推數(shù)列(a2+c2≠0)的通項1.通項的求法為了求出遞推數(shù)列的通項,我們先給出如下兩個定義:定義1:若數(shù)列{}滿足,則稱為數(shù)列{}的特征函數(shù).定義2:方程=x稱為函數(shù)的不動點方程,其根稱為函數(shù)的不動點.下面分兩種情況給出遞推數(shù)列通項的求解通法.(1)當(dāng)c=0,時,由,記,,則有(k≠0),∴數(shù)列{}的特征函數(shù)為=kx+c,由kx+c=xx=
2025-06-25 01:55