【總結(jié)】第一章勾股定理專題突破一勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B類型1利用勾股定理求線段長1.在△ABC中,AB=AC=5,BC=6.若點(diǎn)P在邊AC上移動,求BP最小值是多少?解:過A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-19 18:04
2025-06-21 05:34
【總結(jié)】第二章實(shí)數(shù)周滾動練習(xí)(一)周滾動練習(xí)(一)一、選擇題(每小題3分,共24分)1.在-,0,-35π,-3,-13,…(相鄰兩個3之間依次多一個1)中,其中無理數(shù)的個數(shù)是()A.4B.3C.2D.1C
2025-06-21 05:36
【總結(jié)】…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………學(xué)校:___________姓名:___________班級:___________考號:___________…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………智立方教育松崗校區(qū)八年級上冊數(shù)學(xué)第一章勾股定理測試姓名:_______
2025-04-04 03:54
【總結(jié)】第一章綜合檢測題(時間:120分鐘滿分:120分)2022秋季數(shù)學(xué)八年級上冊?B一、選擇題(每小題3分,共30分)1.下列各組線段能構(gòu)成直角三角形的一組是()A.30、40、50B.7、12、13C.5、9、12D.3、4、62
2025-06-19 21:36
【總結(jié)】第一章勾股定理2一定是直角三角形嗎2一定是直角三角形嗎第一章勾股定理A知識要點(diǎn)分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.下列各組數(shù),可以作為直角三角形的三邊長的是()A.2,3,4B.7,24,25C.8,12,20
2025-06-20 12:46
2025-06-19 22:23
【總結(jié)】第一章勾股定理3勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B立體圖形表面兩點(diǎn)之間的最短距離求立體圖形表面兩點(diǎn)之間的最短距離問題.解決此類問題的依據(jù)是:兩點(diǎn)之間,最短.為此需先將立體圖形的表面展開,將立體圖形轉(zhuǎn)化為圖形;再作兩點(diǎn)之間的,構(gòu)造直角三角形;最后通過
2025-06-20 12:13
2025-06-18 12:27
【總結(jié)】第一章勾股定理探索勾股定理第1課時勾股定理◎新知梳理1.勾、股、弦:在直角三角形中______________稱為勾,______________稱為股,______稱為弦.2.直角三角形的三邊關(guān)系:直角三角形兩條______的平方和等于______的平方.(此
2025-06-21 12:20
【總結(jié)】第一章勾股定理一定是直角三角形嗎◎新知梳理1.在△ABC中,設(shè)∠A,∠B,∠C的對邊分別為a,b,c,若a2+b2=c2,則△ABC是______三角形,且______為90°.直角∠C2.在△ABC中,設(shè)∠A,
【總結(jié)】第一章勾股定理1.探索勾股定理(第1課時)一、學(xué)生起點(diǎn)分析八年級學(xué)生已經(jīng)具備一定的觀察、歸納、探索和推理的能力.在小學(xué),他們已學(xué)習(xí)了一些幾何圖形面積的計算方法(包括割補(bǔ)法),但運(yùn)用面積法和割補(bǔ)思想解決問題的意識和能力還遠(yuǎn)遠(yuǎn)不夠.部分學(xué)生聽說過“勾三股四弦五”,但并沒有真正認(rèn)識什么是“勾股定理”.此外,學(xué)生普遍學(xué)習(xí)積極性較高,探究意識較強(qiáng),課堂活動參與較主動,但合作交流能力和探究能
2025-04-16 22:14
【總結(jié)】勾股定理的應(yīng)用 一、單選題 1.如圖,一架云梯長為25米,頂端A靠在墻上,此時云梯底端B與墻角C距離為7米,云梯滑動后停在的位置上,測得長為4米,則云梯底端B在水平方向滑動的距離為() A.4米...
2024-10-13 17:23
【總結(jié)】第一章勾股定理探索勾股定理第2課時勾股定理的驗證及簡單應(yīng)用◎新知梳理1.勾股定理的驗證:如圖甲是任意一個Rt△ABC,它的兩條直角邊的邊長分別為a,b,斜邊長為c.如圖乙、丙那樣分別取四個與Rt△ABC全等的三角形,放在邊長為(a+b)的正方形內(nèi).(1)圖乙和圖丙中①
2025-06-19 22:21