freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)第一章計(jì)數(shù)原理全套教案新人教a版選修(已修改)

2025-06-22 02:47 本頁(yè)面
 

【正文】 第一章 計(jì)數(shù)原理1.1分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理教學(xué)目標(biāo):知識(shí)與技能:①理解分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理;②會(huì)利用兩個(gè)原理分析和解決一些簡(jiǎn)單的應(yīng)用問題;過程與方法:培養(yǎng)學(xué)生的歸納概括能力;情感、態(tài)度與價(jià)值觀:引導(dǎo)學(xué)生形成 “自主學(xué)習(xí)”與“合作學(xué)習(xí)”等良好的學(xué)習(xí)方式教學(xué)重點(diǎn):分類計(jì)數(shù)原理(加法原理)與分步計(jì)數(shù)原理(乘法原理) 教學(xué)難點(diǎn):分類計(jì)數(shù)原理(加法原理)與分步計(jì)數(shù)原理(乘法原理)的準(zhǔn)確理解授課類型:新授課 課時(shí)安排:2課時(shí) 教 具:多媒體、實(shí)物投影儀 第一課時(shí)引入課題 先看下面的問題: ①?gòu)奈覀儼嗌贤七x出兩名同學(xué)擔(dān)任班長(zhǎng),有多少種不同的選法?②把我們的同學(xué)排成一排,共有多少種不同的排法? 要解決這些問題,就要運(yùn)用有關(guān)排列、組合知識(shí). 排列組合是一種重要的數(shù)學(xué)計(jì)數(shù)方法. 總的來說,就是研究按某一規(guī)則做某事時(shí),一共有多少種不同的做法. 在運(yùn)用排列、組合方法時(shí),經(jīng)常要用到分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理. 這節(jié)課,我們從具體例子出發(fā)來學(xué)習(xí)這兩個(gè)原理. 1 分類加法計(jì)數(shù)原理(1)提出問題:用一個(gè)大寫的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的座位編號(hào),總共能夠編出多少種不同的號(hào)碼?:從甲地到乙地,可以乘火車,,乘坐這些交通工具從甲地到乙地共有多少種不同的走法?探究:你能說說以上兩個(gè)問題的特征嗎?(2)發(fā)現(xiàn)新知分類加法計(jì)數(shù)原理 完成一件事有兩類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法. 那么完成這件事共有 種不同的方法.(3)知識(shí)應(yīng)用,一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專業(yè),具體情況如下: A大學(xué) B大學(xué) 生物學(xué) 數(shù)學(xué) 化學(xué) 會(huì)計(jì)學(xué) 醫(yī)學(xué) 信息技術(shù)學(xué) 物理學(xué) 法學(xué) 工程學(xué)如果這名同學(xué)只能選一個(gè)專業(yè),那么他共有多少種選擇呢?分析:由于這名同學(xué)在 A , B 兩所大學(xué)中只能選擇一所,而且只能選擇一個(gè)專業(yè),又由于兩所大學(xué)沒有共同的強(qiáng)項(xiàng)專業(yè),因此符合分類加法計(jì)數(shù)原理的條件.解:這名同學(xué)可以選擇 A , B 兩所大學(xué)中的一所.在 A 大學(xué)中有 5 種專業(yè)選擇方法,在 B 大學(xué)中有 4 種專業(yè)選擇方法.又由于沒有一個(gè)強(qiáng)項(xiàng)專業(yè)是兩所大學(xué)共有的,因此根據(jù)分類加法計(jì)數(shù)原理,這名同學(xué)可能的專業(yè)選擇共有 5+4=9(種).變式:若還有C大學(xué),其中強(qiáng)項(xiàng)專業(yè)為:新聞學(xué)、金融學(xué)、這名同學(xué)可能的專業(yè)選擇共有多少種?探究:如果完成一件事有三類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法,在第3類方案中有種不同的方法,那么完成這件事共有多少種不同的方法?如果完成一件事情有類不同方案,在每一類中都有若干種不同方法,那么應(yīng)當(dāng)如何計(jì)數(shù)呢?一般歸納:完成一件事情,有n類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法……種不同的方法.理解分類加法計(jì)數(shù)原理:分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,完成一件事要分為若干類,各類的方法相互獨(dú)立,各類中的各種方法也相對(duì)獨(dú)立,用任何一類中的任何一種方法都可以單獨(dú)完成這件事.,從的一個(gè)頂點(diǎn)爬到相對(duì)的另一個(gè)頂點(diǎn)的最近路線共有多少條? 解:從總體上看,如,螞蟻從頂點(diǎn)A爬到頂點(diǎn)C1有三類方法,從局部上看每類又需兩步完成,所以, 第一類, m1 = 12 = 2 條 第二類, m2 = 12 = 2 條 第三類, m3 = 12 = 2 條所以, 根據(jù)加法原理, 從頂點(diǎn)A到頂點(diǎn)C1最近路線共有 N = 2 + 2 + 2 = 6 條練習(xí)1.填空: ( 1 )一件工作可以用 2 種方法完成,有 5 人只會(huì)用第 1 種方法完成,另有 4 人只會(huì)用第 2 種方法完成,從中選出 l 人來完成這件工作,不同選法的種數(shù)是_ 。 ( 2 )從 A 村去 B 村的道路有 3 條,從 B 村去 C 村的道路有 2 條,從 A 村經(jīng) B 的路線有_條.第二課時(shí)2 分步乘法計(jì)數(shù)原理(1)提出問題:用前6個(gè)大寫英文字母和1—9九個(gè)阿拉伯?dāng)?shù)字,以,…,,…的方式給教室里的座位編號(hào),總共能編出多少個(gè)不同的號(hào)碼?用列舉法可以列出所有可能的號(hào)碼: 我們還可以這樣來思考:由于前 6 個(gè)英文字母中的任意一個(gè)都能與 9 個(gè)數(shù)字中的任何一個(gè)組成一個(gè)號(hào)碼,而且它們各不相同,因此共有 69 = 54 個(gè)不同的號(hào)碼.探究:你能說說這個(gè)問題的特征嗎?(2)發(fā)現(xiàn)新知分步乘法計(jì)數(shù)原理 完成一件事有兩類不同方案,在第1類方案中有種不同的方法,在第2類方案中有種不同的方法. 那么完成這件事共有 種不同的方法.(3)知識(shí)應(yīng)用,女生24名. 現(xiàn)要從中選出男、女生各一名代表班級(jí)參加比賽,共有多少種不同的選法?分析:選出一組參賽代表,可以分兩個(gè)步驟.第 l 步選男生.第2步選女生.解:第 1 步,從 30 名男生中選出1人,有30種不同選擇;第 2 步,從24 名女生中選出1人,有 24 種不同選擇.根據(jù)分步乘法計(jì)數(shù)原理,共有3024 =720種不同的選法.探究:如果完成一件事需要三個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法,做第3步有種不同的方法,那么完成這件事共有多少種不同的方法?如果完成一件事情需要個(gè)步驟,做每一步中都有若干種不同方法,那么應(yīng)當(dāng)如何計(jì)數(shù)呢?一般歸納: 完成一件事情,需要分成n個(gè)步驟,做第1步有種不同的方法,做第2步有種不同的方法……種不同的方法.理解分步乘法計(jì)數(shù)原理:分步計(jì)數(shù)原理針對(duì)的是“分步”問題,完成一件事要分為若干步,各個(gè)步驟相互依存,完成任何其中的一步都不能完成該件事,只有當(dāng)各個(gè)步驟都完成后,才算完成這件事.3.理解分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理異同點(diǎn)①相同點(diǎn):都是完成一件事的不同方法種數(shù)的問題②不同點(diǎn):分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,完成一件事要分為若干類,各類的方法相互獨(dú)立,各類中的各種方法也相對(duì)獨(dú)立,用任何一類中的任何一種方法都可以單獨(dú)完成這件事,是獨(dú)立完成;而分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問題,完成一件事要分為若干步,各個(gè)步驟相互依存,完成任何其中的一步都不能完成該件事,只有當(dāng)各個(gè)步驟都完成后,才算完成這件事,是合作完成.例2 .如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 解: 按地圖A、B、C、D四個(gè)區(qū)域依次分四步完成, 第一步, m1 = 3 種, 第二步, m2 = 2 種, 第三步, m3 = 1 種, 第四步, m4 = 1 種,所以根據(jù)乘法原理, 得到不同的涂色方案種數(shù)共有N = 3 2 11 = 6 變式1,如圖,要給地圖A、B、C、D四個(gè)區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種? 2若顏色是2種,4種,5種又會(huì)什么樣的結(jié)果呢?練習(xí)2.現(xiàn)有高一年級(jí)的學(xué)生 3 名,高二年級(jí)的學(xué)生 5 名,高三年級(jí)的學(xué)生 4 名. ( 1 )從中任選1 人參加接待外賓的活動(dòng),有多少種不同的選法?村去 C 村,不同 ( 2 )從 3 個(gè)年級(jí)的學(xué)生中各選 1 人參加接待外賓的活動(dòng),有多少種不同的選法? 第三課時(shí)3 綜合應(yīng)用例1. 書架的第1層放有4本不同的計(jì)算機(jī)書,第2層放有3本不同的文藝書,第3層放2本不同的體育書.①?gòu)臅苌先稳?本書,有多少種不同的取法?②從書架的第3層各取1本書,有多少種不同的取法?③從書架上任取兩本不同學(xué)科的書,有多少種不同的取法?【分析】①要完成的事是“取一本書”,由于不論取書架的哪一層的書都可以完成了這件事,因此是分類問題,應(yīng)用分類計(jì)數(shù)原理.②要完成的事是“從書架的第3層中各取一本書”,由于取一層中的一本書都只完成了這件事的一部分,只有第3層都取后,才能完成這件事,因此是分步問題,應(yīng)用分步計(jì)數(shù)原理.③要完成的事是“取2本不同學(xué)科的書”,先要考慮的是取哪兩個(gè)學(xué)科的書,如取計(jì)算機(jī)和文藝書各1本,再要考慮取1本計(jì)算機(jī)書或取1本文藝書都只完成了這件事的一部分,應(yīng)用分步計(jì)數(shù)原理,上述每一種選法都完成后,這件事才能完成,因此這些選法的種數(shù)之間還應(yīng)運(yùn)用分類計(jì)數(shù)原理.解: (1) 從書架上任取1本書,有3類方法:第1類方法是從第1層取1本計(jì)算機(jī)書,有4 種方法;第2 類方法是從第2 層取1本文藝書,有3 種方法;第3類方法是從第 3 層取 1 本體育書,有 2 種方法.根據(jù)分類加法計(jì)數(shù)原理,不同取法的種數(shù)是 =4+3+2=9。 ( 2 )從書架的第 1 , 2 , 3 層各取 1 本書,可以分成3個(gè)步驟完成:第 1 步從第 1 層取 1 本計(jì)算機(jī)書,有 4 種方法;第 2 步從第 2 層取1本文藝書,有 3 種方法;第 3 步從第3層取1 本體育書,有 2 種方法.根據(jù)分步乘法計(jì)數(shù)原理,不同取法的種數(shù)是=432=24 .(3)。例2. 要從甲、乙、丙3幅不同的畫中選出2幅,分別掛在左、右兩邊墻上的指定位置,問共有多少種不同的掛法?解:從 3 幅畫中選出 2 幅分別掛在左、右兩邊墻上,可以分兩個(gè)步驟完成:第 1 步,從 3 幅畫中選 1 幅掛在左邊墻上,有 3 種選法;第 2 步,從剩下的 2 幅畫中選 1 幅掛在右邊墻上,有 2 種選法.根據(jù)分步乘法計(jì)數(shù)原理,不同掛法的種數(shù)是 N=32=6 . 6 種掛法可以表示如下:分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,回答的都是有關(guān)做一件事的不同方法的種數(shù)問題.區(qū)別在于:分類加法計(jì)數(shù)原理針對(duì)的是“分類”問題,其中各種方法相互獨(dú)立,用其中任何一種方法都可以做完這件事,分步乘法計(jì)數(shù)原理針對(duì)的是“分步”問題,各個(gè)步驟中的方法互相依存,只有各個(gè)步驟都完成才算做完這件事.,某城市家庭汽車擁有量迅速增長(zhǎng),汽車牌照號(hào)碼需交通管理部門出臺(tái)了一種汽車牌照組成辦法,每一個(gè)汽車牌照都必須有3個(gè)不重復(fù)的英文字母和 3 個(gè)不重復(fù)的阿拉伯?dāng)?shù)字,并且 3 個(gè)字母必須合成一組出現(xiàn),3個(gè)數(shù)字也必須合成一組出現(xiàn).那么這種辦法共能給多少輛汽車上牌照?分析:按照新規(guī)定,牌照可以分為 2類,即字母組合在左和字母組合在右.確定一個(gè)牌照的字母和數(shù)字可以分6個(gè)步驟.解:將汽車牌照分為 2 類,一類的字母組合在左,另一類的字母組合在右.字母組合在左時(shí),分6個(gè)步驟確定一個(gè)牌照的字母和數(shù)字:第1步,從26個(gè)字母中選1個(gè),放在首位,有26種選法;第2步,從剩下的25個(gè)字母中選 1個(gè),放在第2位,有25種選法;第3步,從剩下的24個(gè)字母中選 1個(gè),放在第3位,有24種選法;第4步,從10個(gè)數(shù)字中選1個(gè),放在第 4 位,有10種選法;第5步,從剩下的 9個(gè)數(shù)字中選1個(gè),放在第5位,有9種選法;第6步,從剩下的 8個(gè)字母中選1個(gè),放在第6位,有8種選法.根據(jù)分步乘法計(jì)數(shù)原理,字母組合在左的牌照共有26 25241098=11 232 000(個(gè)) .同理,字母組合在右的牌照也有11232 000 個(gè).所以,共能給11232 000 + 11232 000 = 22464 000(個(gè)) .輛汽車上牌照. 用兩個(gè)計(jì)數(shù)原理解決計(jì)數(shù)問題時(shí),最重要的是在開始計(jì)算之前要進(jìn)行仔細(xì)分析 ― 需要分類還是需要分步.分類要做到“不重不漏”.分類后再分別對(duì)每一類進(jìn)行計(jì)數(shù),最后用分類加法計(jì)數(shù)原理求和,得到總數(shù).分步要做到“步驟完整” ― 完成了所有步驟,恰好完成任務(wù),當(dāng)然步與步之間要相互獨(dú)立.分步后再計(jì)算每一步的方法數(shù),最后根據(jù)分步乘法計(jì)數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù).練習(xí)1.乘積展開后共有多少項(xiàng)?2.某電話局管轄范圍內(nèi)的電話號(hào)碼由八位數(shù)字組成,其中前四位的數(shù)字是不變的,后四位數(shù)字都是。到 9 之間的一個(gè)數(shù)字,那么這個(gè)電話局不同的電話號(hào)碼最多有多少個(gè)?3.從 5 名同學(xué)中選出正、副組長(zhǎng)各 1 名,有多少種不同的選法?4.某商場(chǎng)有 6 個(gè)門,如果某人從其中的任意一個(gè)門進(jìn)人商場(chǎng),并且要求從其他的門出去,共有多少種不同的進(jìn)出商場(chǎng)的方式? 第四課時(shí),需要用3個(gè)字符,其中首字符要求用字母 A~G 或 U~Z , 后兩個(gè)要求用數(shù)字1~9.問最多可以給多少個(gè)程序命名?分析:要給一個(gè)程序模塊命名,可以分三個(gè)步驟:第 1 步,選首字符;第2步,選中間字符;第3步,選最后一個(gè)字符.而首字符又可以分為兩類.解:先計(jì)算首字符的選法.由分類加法計(jì)數(shù)原理,首字符共有7 + 6 = 13種選法.再計(jì)算可能的不同程序名稱.由分步乘法計(jì)數(shù)原理,最多可以有1399 = = 1053 個(gè)不同的名稱,即最多可以給1053個(gè)程序命名.例2. 核糖核酸(RNA)分子是在生物細(xì)胞中發(fā)現(xiàn)的化學(xué)成分一個(gè) RNA 分子是一個(gè)有著數(shù)百個(gè)甚至數(shù)千個(gè)位置的長(zhǎng)鏈,長(zhǎng)鏈中每一個(gè)位置上都由一種稱為堿基的化學(xué)成分所占據(jù).總共有 4 種不同的堿基,分別用A,C,G,U表示.在一個(gè) RNA 分子中,各種堿基能夠以任意次序出現(xiàn),所以在任意一個(gè)位置上的堿基與其他位置上的堿基無關(guān).假設(shè)有一類 RNA 分子由 100
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1