freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

【最新資料】一次函數(shù)和反比例函數(shù)知識點總結(jié)(已修改)

2025-06-18 18:06 本頁面
 

【正文】 一次函數(shù)知識點總結(jié):一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強。甚至有存在探究題目出現(xiàn)。主要考察內(nèi)容:①會畫一次函數(shù)的圖像,并掌握其性質(zhì)。②會根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。③能用一次函數(shù)解決實際問題。④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。突破方法:①正確理解掌握一次函數(shù)的概念,圖像和性質(zhì)。②運用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。③掌握用待定系數(shù)法球一次函數(shù)解析式。④做一些綜合題的訓(xùn)練,提高分析問題的能力。函數(shù)性質(zhì): ,比值為k.   即:y=kx+b(k,b為常數(shù),k≠0),   ∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。   =0時,b為函數(shù)在y軸上的點,坐標(biāo)為(0,b)。   3當(dāng)b=0時(即 y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。  ?。?  當(dāng)兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;  當(dāng)兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;   當(dāng)兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;   當(dāng)兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。   若兩個變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)1.作法與圖形:通過如下3個步驟:   (1)列表.  ?。?)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。   一般的y=kx+b(k≠0)的圖象過(0,b)和(b/k,0)兩點畫直線即可。   正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點的一條直線,一般?。?,0)和(1,k)兩點。  ?。?)連線,可以作出一次函數(shù)的圖象——一條直線。因此,作一次函數(shù)的圖象只需知道2點,并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點分別是k分之b與0,0與b).   2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(b/k,0)正比例函數(shù)的圖像都是過原點。   3.函數(shù)不是數(shù),它是指某一變化過程中兩個變量之間的關(guān)系。   4.k,b與函數(shù)圖像所在象限:   y=kx時(即b等于0,y與x成正比例):   當(dāng)k0時,直線必通過第一、三象限,y隨x的增大而增大;   當(dāng)k0時,直線必通過第二、四象限,y隨x的增大而減小。 y=kx+b時:   當(dāng) k0,b0, 這時此函數(shù)的圖象經(jīng)過第一、二、三象限;   當(dāng) k0,b0, 這時此函數(shù)的圖象經(jīng)過第一、三、四象限;   當(dāng) k0,b0, 這時此函數(shù)的圖象經(jīng)過第一、二、四象限;   當(dāng) k0,b0, 這時此函數(shù)的圖象經(jīng)過第二、三、四象限;   當(dāng)b0時,直線必通過第一、二象限;   當(dāng)b0時,直線必通過第三、四象限。   特別地,當(dāng)b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。   這時,當(dāng)k0時,直線只通過第一、三象限,不會通過第二、四象限。當(dāng)k0時,直線只通過第二、四象限,不會通過第一、三象限。   特殊位置關(guān)系:   當(dāng)平面直角坐標(biāo)系中兩直線平行時,其函數(shù)解析式中K值(即一次項系數(shù))相等   當(dāng)平面直角坐標(biāo)系中兩直線垂直時,其函數(shù)解析式中K值互為負倒數(shù)(即兩個K值的乘積為1)  ?。?③點斜式 yy1=k(xx1)(k為直線斜率,(x1,y1)為該直線所過的一個點)④兩點式 (yy1) / (y2y1)=(xx1)/(x2x1)(已知直線上(x1,y1)與(x2,y3)兩點) ⑤截距式?。╝、b分別為直線在x、y軸上的截距)⑥實用型 (由實際問題來做)公式:(y1y2)/(x1x2)   :|x1x2|/2  ?。簗y1y2|/2  :√(x1x2)^2+(y1y2)^2 (注:根號下(x1x2)與(y1y2)的平方和)  ?。航鈨珊瘮?shù)式   兩個一次函數(shù) y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 將解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 兩式任一式 得到y(tǒng)=y0 則(x0,y0)即為 y1=k1x+b1 與 y2=k2x+b2 交點坐標(biāo)  ?。篬(x1+x2)/2,(y1+y2)/2]  ?。海╔x1)/(x1x2)=(Yy1)/(y1y2) (其中分母為0,則分子為0)   x y   +, +(正,正)在第一象限    ,+ (負,正)在第二象限    , (負,負)在第三象限   + , (正,負)在第四象限   =k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2   =k1x+b1⊥y2=k2x+b2,那么k1k2=1   10.   y=k(xn)+b就是向右平移n個單位復(fù)習(xí)要點:一次函數(shù)的圖象和性質(zhì)正比例函數(shù)的圖象和性質(zhì)考點講析1.一次函數(shù)的意義及其圖象和性質(zhì)⑴.一次函數(shù):若兩個變量x、y間的關(guān)系式可以表示成y=kx+b(k、b為常數(shù),k ≠0)的形式,則稱y是x的一次函數(shù)(x是自變量,y是因變量〕特別地,當(dāng)b=0時,稱y是x的正比例函數(shù).⑵.一次函數(shù)的圖象:一次函數(shù)y=kx+b的圖象是經(jīng)過點(0,b),(-,0 )的一條直線,正比例函數(shù)y=kx的圖象是經(jīng)過原點(0,0)的一條直線,如下表所示.⑶.一次函數(shù)的性質(zhì):y=kx+b(k、b為常數(shù),k ≠0)當(dāng)k >0時,y的值隨x的值增大而增大;當(dāng)k<0時,y的值隨x值的增大而減小.⑷.直線y=kx+b(k、b為常數(shù),k ≠0)時在坐標(biāo)平面內(nèi)的位置與k在的關(guān)系. ①直線經(jīng)過第一、二、三象限(直線不經(jīng)過第四象限); ②直線經(jīng)過第一、三、四象限(直線不經(jīng)過第二象限); ③直線經(jīng)過第一、二、四象限(直線不經(jīng)過第三象限); ④直線經(jīng)過第二、三、四象限(直線不經(jīng)過第一象限);2.一次函數(shù)表達式的求法⑴.待定系數(shù)法:先設(shè)出式子中的未知系數(shù),再根據(jù)條件列議程或議程組求出未知系數(shù),從而寫出這個式子的方法,叫做待定系數(shù)法,其中的未知系數(shù)也稱為待定系數(shù)。⑵.用待定系數(shù)法求出函數(shù)表殼式的一般步驟:⑴寫出函數(shù)表達式的一般形式;⑵把已知條件(自變量與函數(shù)的對應(yīng)值)公共秩序 函數(shù)表達式中,得到關(guān)于待定系數(shù)的議程或議程組;⑶解方程(組)求出待定系數(shù)的值,從而寫出函數(shù)的表達式。⑶.一次函數(shù)表達式的求法:確定一次函數(shù)表達式常用 待定系數(shù)法,其中確定正比例函數(shù)表達式,只需一對x與y的值,確定一次函數(shù)表達式,需要兩對x與y的值。反比例函數(shù):(1)反比例函數(shù)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).(2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.(3)反比例函數(shù)的性質(zhì)①當(dāng)k>0時,圖象的兩個分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減?。诋?dāng)k<0時,圖象的兩個分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.③反比例函數(shù)圖象關(guān)于直線y=177。x對稱,關(guān)于原點對稱.(4)k的兩種求法①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB(5)正比例函數(shù)和反比例函數(shù)的交點問題若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時,兩函數(shù)圖象無交點;當(dāng)k1k2>0時,兩函數(shù)圖象有兩個交點,坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點,兩交點一定關(guān)于原點對稱.(6)對于雙曲線上的點A、B,有兩種三角形的面積(S△AOB)要會求(會表示),如圖7-1所示.考點一、平面直角坐標(biāo)系 (3分)平面直角坐標(biāo)系在平面內(nèi)畫兩條互相垂直且有公共原點的數(shù)軸,就組成了平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。注意:x軸和y軸上的點,不屬于任何象限。點的坐標(biāo)的概念點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時,(a,b)和(b,a)是兩個不同點的坐標(biāo)??键c二、不同位置的點的坐標(biāo)的特征 (3分)各象限內(nèi)點的坐標(biāo)的特征點P(x,y)在第一象限點P(x,y)在第二象限點P(x,y)在第三象限點P(x,y)在第四象限坐標(biāo)軸上的點的特征點P(x,y)在x軸上,x為任意實數(shù)點P(x,y)在y軸上,y為任意實數(shù)點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標(biāo)為(0,0)兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征點P(x,y)在第一、三象限夾角平分線上x與y相等點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù)和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征位于平行于x軸的直線上的各點的縱坐標(biāo)相同。位于平行于y軸的直線上的各點的橫坐標(biāo)相同。關(guān)于x軸、y軸或遠點對稱的點的坐標(biāo)的特征點P與點p’關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)點P與點p’關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)點P與點p’關(guān)于原點對稱橫、縱坐標(biāo)均互為相反數(shù)點到坐標(biāo)軸及原點的距離點P(x,y)到坐標(biāo)軸及原點的距離:(1)點P(x,y)到x軸的距離等于(2)點P(x,y)到y(tǒng)軸的距離等于(3)點P(x,y)到原點的距離等于考點三、函數(shù)及其相關(guān)概念 (3~8分)變量與常量在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。函數(shù)解析式用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。函數(shù)的三種表示法及其優(yōu)缺點(1)解析法兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。(2)列表法把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。(3)圖像法用圖像表示函數(shù)關(guān)系的方法叫做圖像法。由函數(shù)解析式畫其圖像的一般步驟(1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值(2)描點:以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來??键c四、正比例函數(shù)和一次函數(shù) (3~10分)正比例函數(shù)和一次函數(shù)的概念一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。特別地,當(dāng)一次函數(shù)中的b為0時,(k為常數(shù),k0)。這時,y叫做x的正比例函數(shù)。一次函數(shù)的圖像所有一次函數(shù)的圖像都是一條直線一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。k的符號b的符號函數(shù)圖像圖像特征k0b0 y 0 x圖像經(jīng)過一、二、三象限,y隨x的增大而增大。b0 y 0 x圖像經(jīng)過一、三、四象限,y隨x的增大而增大。K0b0 y 0 x 圖像經(jīng)過一、二、四象限,y隨x的增大而減小b0 y 0 x 圖像經(jīng)過二、三、四象限,y隨x的增大而減小。注:當(dāng)b=0時,一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。正比例函數(shù)的性質(zhì)一般地,正比例函數(shù)有下列性質(zhì):(1)當(dāng)k0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;(2)當(dāng)k0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。一次函數(shù)的性質(zhì)一般地,一次函數(shù)有下列性質(zhì):(1)當(dāng)k0時,y隨x的增大而增大(2)當(dāng)k0時,y隨x的增大而減小正比例函數(shù)和一次函數(shù)解析式的確定確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法??键c五、反比例函數(shù) (3~10分)反比例函數(shù)的概念一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。反比例函數(shù)的圖像反比例函數(shù)的圖像是雙曲線,它有兩個分支
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1