【總結】山西省朔州市應縣四中高二數(shù)學學案(十一)等差數(shù)列與等比數(shù)列編寫人:朱強基考綱要求1理解數(shù)列的有關概念,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項。2掌握等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和的公式,并能夠運用這些知識解決一些問題。重點、難點歸納1數(shù)列的有關概念數(shù)列:按照一定的次序排列的一列數(shù)。通項公式:數(shù)列的第n項an與n之
2025-04-17 08:11
【總結】重慶市萬州高級中學曾國榮2020年12月16日星期三重慶市萬州高級中學曾國榮§高2020級數(shù)學復習課件等比數(shù)列定義:一般的,如果一個數(shù)列從第2項起,每一項與它前一項的比都等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列.
2024-11-09 12:24
【總結】n重點難點n重點:等比數(shù)列的定義、通項公式、前n項的和及性質n難點:等比數(shù)列的應用n知識歸納n1.等比數(shù)列的定義n一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列.qm-nn一、方程的思想n等比數(shù)列中有五個量a1、n、q、an、
2025-04-30 18:12
【總結】
2024-11-12 17:10
【總結】《等差、等比數(shù)列》專項練習題1、選擇題:1.已知等差數(shù)列{an}中,a1=1,d=1,則該數(shù)列前9項和S9等于( )2.已知等差數(shù)列{an}的公差為正數(shù),且a3·a7=-12,a4+a6=-4,則S20為( ?。〢.180 B.-180 C.90 D.-903.已知等差數(shù)列{an}中,a2+a8=8,則該數(shù)列前9
2025-03-25 06:56
【總結】等比數(shù)列練習題①在等差數(shù)列中,若,則.②已知數(shù)列中,,又數(shù)列{}是等差數(shù)列,則1.等比數(shù)列中,已知(Ⅰ)求的通項公式(Ⅰ)若分別為等差數(shù)列的第3項和第5項,試求數(shù)列的通項公式及前項和.:,,.(Ⅰ)求的通項公式及前項和(Ⅰ)已知是等差數(shù)列,為前項和,且,,求.3.等比數(shù)列的公比為,作數(shù)列使,求證數(shù)列也是等
2025-01-15 10:21
【總結】范文范例參考等差數(shù)列、等比數(shù)列1.(2014·山東青島二模)數(shù)列{an}為等差數(shù)列,a1,a2,a3成等比數(shù)列,a5=1,則a10=________2.(2014·河北邯鄲二模)在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13)=24,則該數(shù)列前13項的和是________3.(2014·河北唐山一模)已知等比數(shù)
2025-06-25 03:50
【總結】第一篇:等差數(shù)列、等比數(shù)列知識點梳理 等差數(shù)列和等比數(shù)列知識點梳理 第一節(jié):等差數(shù)列的公式和相關性質 1、等差數(shù)列的定義:對于一個數(shù)列,如果它的后一項減去前一項的差為一個定值,則稱這個數(shù)列為等差...
2024-11-09 22:38
【總結】2020屆高考數(shù)學復習強化雙基系列課件36《等差數(shù)列與等比數(shù)列的綜合問題》課前熱身:30,37,32,35,34,33,36,(),38的特點,在括號內適當?shù)囊粋€數(shù)是_____.x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四
2024-11-11 08:49
【總結】高考數(shù)學總復習北師大版第6章數(shù)列高考數(shù)學總復習北師大版第6章第三節(jié)第三節(jié)等比數(shù)列高考數(shù)學總復習北師大版第6章第三節(jié)高考數(shù)學總復習北師大版第6章第三節(jié)考
2025-05-04 08:27
【總結】等比數(shù)列的定義:一、知識回顧:1qaann??1通項公式:211??nnqaa等比中項:3abGabGbGa?????2成等比,,1+2+22+23+24+…+263=?:二、等比數(shù)列求和公式對①、②進行比較.S64=1+2+4+8+…+262+263①2S64=2+4+8+16
2025-08-16 01:49
【總結】第一篇:等差數(shù)列、等比數(shù)列的證明及數(shù)列求和 等差數(shù)列、等比數(shù)列的證明 1.已知數(shù)列{an}滿足a1=1,an=3an-1+2n-3(n32),(Ⅰ)求證:數(shù)列{an+n}是等比數(shù)列; (Ⅱ)求數(shù)...
2025-10-03 01:48
【總結】《走向高考》高考總復習·數(shù)學第3章數(shù)列首頁上頁下頁末頁知識梳理規(guī)律方法提煉課后強化作業(yè)課堂題型設計《走向高考》高考總復習·數(shù)學
2025-09-20 10:36
【總結】構造等差數(shù)列或等比數(shù)列?由于等差數(shù)列與等比數(shù)列的通項公式顯然,對于一些遞推數(shù)列問題,若能構造等差數(shù)列或等比數(shù)列,無疑是一種行之有效的構造方法.?例1?設各項均為正數(shù)的數(shù)列的前n項和為Sn,對于任意正整數(shù)n,都有等式:成立,求的通項an.?解:,??∴????,
2025-06-24 16:44
【總結】第一篇:等比數(shù)列教案 等比數(shù)列(復習課)學案 :①理解等比數(shù)列的概念;②掌握等比數(shù)列的通項公式與前n項和公式及應用③了解等比數(shù) 列與指數(shù)函數(shù)的關系 發(fā)展要求:①掌握等比數(shù)列的典型性質及應用。②...
2024-11-05 01:45