【總結(jié)】復(fù)習(xí)回顧an=a1+(n-1)dan-an-1=d(n∈N*且n≥2)1+2+3+···+100=?高斯,(1777—1855)德國(guó)著名數(shù)學(xué)家。S=100+99+98+3…+2+1問(wèn)題1S=1+2+3+…+98+99+
2025-05-12 17:18
【總結(jié)】等差及等比數(shù)列定義及其性質(zhì)知識(shí)要點(diǎn)解法七:令m=1得S1=30,S2=100,得a1=30,a1+a2=100,∴a1=30,a2=70∴a3=70+(70-30)=110∴S3=a1+a2+a3=2101、數(shù)列的單調(diào)性:(等差數(shù)列)(1)當(dāng)d0時(shí),為遞增數(shù)列;sn有最?。?)當(dāng)d
2025-08-15 20:33
【總結(jié)】德國(guó)數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=10150+51=1015050思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如何求兩堆鋼管總數(shù)?2.聯(lián)想:(補(bǔ)成平行四邊形)59510100-25032105002255026(分割成一
2025-10-31 00:27
【總結(jié)】數(shù)學(xué)人教A版·必修5
2025-07-26 07:34
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第1課時(shí)等差數(shù)列與等比數(shù)列要點(diǎn)·疑點(diǎn)·考點(diǎn)(比)數(shù)列的定義如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差(
2025-08-16 01:49
【總結(jié)】等差數(shù)列(1)高一數(shù)學(xué)必修五第二章數(shù)列作業(yè)講評(píng):課本:P34B組1學(xué)海:P233,P24探究活動(dòng)復(fù)習(xí)鞏固?通項(xiàng)公式法、列表法、圖象法、遞推法.律,數(shù)列可分為哪些類型?有窮數(shù)列,無(wú)窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動(dòng)數(shù)列,常數(shù)列.知識(shí)探究
2025-08-16 01:28
【總結(jié)】主講老師:數(shù)列、等差數(shù)列復(fù)習(xí)知識(shí)框架圖數(shù)列一般數(shù)列特殊函數(shù)——等差數(shù)列通項(xiàng)公式遞推公式圖象法定義等差中項(xiàng)通項(xiàng)公式前n項(xiàng)和公式性質(zhì)定義分類基本概念基本題型題型一:求數(shù)列通項(xiàng)公式的問(wèn)題例1.已知數(shù)列{an}的首項(xiàng)a1=1,其遞推
2025-10-31 08:45
【總結(jié)】等差數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用表示,2a…,第n項(xiàng)用表示,na…,數(shù)
2025-08-16 02:28
【總結(jié)】看圖片數(shù)個(gè)數(shù)?數(shù)列數(shù)列數(shù)列數(shù)列等差數(shù)列的概念復(fù)習(xí)回顧數(shù)列的定義,通項(xiàng)公式,遞推公式按一定次序排成的一列數(shù)叫做數(shù)列。一般寫(xiě)成a1,a2,a3,…,an,…,簡(jiǎn)記為{an}。如果數(shù)列{an}的第n項(xiàng)an與n的
2025-08-05 10:43
2025-08-05 19:28
【總結(jié)】《等差數(shù)列》教案 《等差數(shù)列》教案1教學(xué)目標(biāo): :理解等差數(shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想,掌握并會(huì)用等差數(shù)列的通項(xiàng)公式,初步引入“數(shù)學(xué)建?!钡乃枷敕椒ú⒛苓\(yùn)用。 ...
2025-11-24 04:38
【總結(jié)】復(fù)習(xí)回顧an=a1+(n-1)da1=an-(n-1)dd=(an-a1)/(n-1)n=(an-a1)/d+1an+1-an=d(n≥1且n∈N*)an=am+(n-m)d(n,m∈N*)nmaadnm???a1、an、n、d知三求一思考:?jiǎn)栴}1:如果在
2025-08-16 02:29
【總結(jié)】n要點(diǎn)要點(diǎn)·疑點(diǎn)疑點(diǎn)·考點(diǎn)考點(diǎn)n課課前前熱熱身身?n能力能力·思維思維·方法方法?n延伸延伸·拓展拓展n誤誤解解分分析析第1課時(shí)等差數(shù)列與等比數(shù)列要點(diǎn)要點(diǎn)·疑點(diǎn)疑點(diǎn)·考點(diǎn)考點(diǎn)(比)數(shù)列的定義如果一
2025-08-16 01:53
【總結(jié)】等差數(shù)列2020-11-3知識(shí)歸納:容?定義.等差數(shù)列通項(xiàng).前n項(xiàng)和.主要性質(zhì).2.等差數(shù)列的定義、用途及使用時(shí)需注意的問(wèn)題?
2025-10-31 00:25
【總結(jié)】等差數(shù)列的前n項(xiàng)和一.新課引入一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支。這個(gè)V形架上共放著多少支鉛筆?問(wèn)題就是“”?1004321???????這是小學(xué)時(shí)就知道的一個(gè)故事,高斯的算法非常高明,回憶他是怎樣算的?
2025-11-08 19:18