freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高等數(shù)學(xué)基本知識(shí)點(diǎn)大全大一復(fù)習(xí),考研必備(已修改)

2025-04-29 13:04 本頁面
 

【正文】 大一期末復(fù)習(xí)和考研復(fù)習(xí)必備高高等數(shù)學(xué)基本知識(shí)點(diǎn)83一、函數(shù)與極限集合的概念 ⑴、全體非負(fù)整數(shù)組成的集合叫做非負(fù)整數(shù)集(或自然數(shù)集)。記作N⑵、所有正整數(shù)組成的集合叫做正整數(shù)集。記作N+或N+。⑶、全體整數(shù)組成的集合叫做整數(shù)集。記作Z。⑷、全體有理數(shù)組成的集合叫做有理數(shù)集。記作Q。⑸、全體實(shí)數(shù)組成的集合叫做實(shí)數(shù)集。記作R。⑶、鄰域:設(shè)α與δ是兩個(gè)實(shí)數(shù),且δ>│xα│<δ的實(shí)數(shù)x的全體稱為點(diǎn)α的δ鄰域,點(diǎn)α稱為此鄰域的中心,δ稱為此鄰域的半徑。函數(shù)⑴、函數(shù)的定義:如果當(dāng)變量x在其變化范圍內(nèi)任意取定一個(gè)數(shù)值時(shí),量y按照一定的法則f總有確定的數(shù)值與它對(duì)應(yīng),則稱y是x的函數(shù)。變量x的變化范圍叫做這個(gè)函數(shù)的定義域。通常x叫做自變量,y叫做函數(shù)值(或因變量),變量y的變化范圍叫做這個(gè)函數(shù)的值域。注:為了表明y是x的函數(shù),我們用記號(hào)y=f(x)、y=F(x)等等來表示。這里的字母f、F表示y與x之間的對(duì)應(yīng)法則即函數(shù)關(guān)系,它們是可以任意采用不同的字母來表示的。如果自變量在定義域內(nèi)任取一個(gè)確定的值時(shí),函數(shù)只有一個(gè)確定的值和它對(duì)應(yīng),這種函數(shù)叫做單值函數(shù),否則叫做多值函數(shù)。這里我們只討論單值函數(shù)。⑵、函數(shù)相等由函數(shù)的定義可知,一個(gè)函數(shù)的構(gòu)成要素為:定義域、對(duì)應(yīng)關(guān)系和值域。由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,我們就稱兩個(gè)函數(shù)相等。⑶、域函數(shù)的表示方法a):解析法:用數(shù)學(xué)式子表示自變量和因變量之間的對(duì)應(yīng)關(guān)系的方法即是解析法。例:笛卡爾直角坐標(biāo)系中,半徑為r、圓心在原點(diǎn)的圓的方程是:x2+y2=r2b):表格法:將一系列的自變量值與對(duì)應(yīng)的函數(shù)值列成表來表示函數(shù)關(guān)系的方法即是表格法。例:在實(shí)際應(yīng)用中,我們經(jīng)常會(huì)用到的平方表,三角函數(shù)表等都是用表格法表示的函數(shù)。c):圖示法:用坐標(biāo)平面上曲線來表示函數(shù)的方法即是圖示法。一般用橫坐標(biāo)表示自變量,縱坐標(biāo)表示因變量。例:笛卡爾直角坐標(biāo)系中,半徑為r、圓心在原點(diǎn)的圓用圖示法表示為:函數(shù)的簡單性態(tài)⑴、函數(shù)的有界性:如果對(duì)屬于某一區(qū)間I的所有x值總有│f(x)│≤M成立,其中M是一個(gè)與x無關(guān)的常數(shù),那么我們就稱f(x)在區(qū)間I有界,否則便稱無界。注:一個(gè)函數(shù),如果在其整個(gè)定義域內(nèi)有界,則稱為有界函數(shù)例題:函數(shù)cosx在(∞,+∞)內(nèi)是有界的.⑵、函數(shù)的單調(diào)性:如果函數(shù)在區(qū)間(a,b)內(nèi)隨著x增大而增大,即:對(duì)于(a,b)內(nèi)任意兩點(diǎn)x1及x2,當(dāng)x1<x2時(shí),有 ,則稱函數(shù)在區(qū)間(a,b)內(nèi)是單調(diào)增加的。如果函數(shù)在區(qū)間(a,b)內(nèi)隨著x增大而減小,即:對(duì)于(a,b)內(nèi)任意兩點(diǎn)x1及x2,當(dāng)x1<x2時(shí),有,則稱函數(shù)在區(qū)間(a,b)內(nèi)是單調(diào)減小的。例題:函數(shù)=x2在區(qū)間(∞,0)上是單調(diào)減小的,在區(qū)間(0,+∞)上是單調(diào)增加的。⑶、函數(shù)的奇偶性如果函數(shù)對(duì)于定義域內(nèi)的任意x都滿足=,則叫做偶函數(shù);如果函數(shù)對(duì)于定義域內(nèi)的任意x都滿足=,則叫做奇函數(shù)。注:偶函數(shù)的圖形關(guān)于y軸對(duì)稱,奇函數(shù)的圖形關(guān)于原點(diǎn)對(duì)稱。⑷、函數(shù)的周期性對(duì)于函數(shù),若存在一個(gè)不為零的數(shù)l,使得關(guān)系式對(duì)于定義域內(nèi)任何x值都成立,則叫做周期函數(shù),l是的周期。注:我們說的周期函數(shù)的周期是指最小正周期。例題:函數(shù)是以2π為周期的周期函數(shù);函數(shù)tgx是以π為周期的周期函數(shù)。反函數(shù)⑴、反函數(shù)的定義:設(shè)有函數(shù),若變量y在函數(shù)的值域內(nèi)任取一值y0時(shí),變量x在函數(shù)的定義域內(nèi)必有一值x0與之對(duì)應(yīng),即,稱為函數(shù)的反函數(shù).注:由此定義可知,函數(shù)也是函數(shù)的反函數(shù)。 ⑵、反函數(shù)的存在定理:若在(a,b)上嚴(yán)格增(減),其值域?yàn)?R,則它的反函數(shù)必然在R上確定,且嚴(yán)格增(減).注:嚴(yán)格增(減)即是單調(diào)增(減)例題:y=x2,其定義域?yàn)?∞,+∞),值域?yàn)閇0,+∞).對(duì)于y取定的非負(fù)值,可求得x=177。.若我們不加條件,由y的值就不能唯一確定x的值,也就是在區(qū)間(∞,+∞)上,函數(shù)不是嚴(yán)格增(減),故其沒有反函數(shù)。如果我們加上條件,要求x≥0,則對(duì)y≥0、x=就是y=x2在要求x≥0時(shí)的反函數(shù)。即是:函數(shù)在此要求下嚴(yán)格增(減). ⑶、反函數(shù)的性質(zhì):在同一坐標(biāo)平面內(nèi),與的圖形是關(guān)于直線y=x對(duì)稱的。例題:函數(shù)與函數(shù)互為反函數(shù),則它們的圖形在同一笛卡爾直角坐標(biāo)系中是關(guān)于直線y=x對(duì)稱的。如右圖所示: 復(fù)合函數(shù)復(fù)合函數(shù)的定義:若y是u的函數(shù):,而u又是x的函數(shù):,且的函數(shù)值的全部或部分在的定義域內(nèi),那末,y通過u的聯(lián)系也是x的函數(shù),我們稱后一個(gè)函數(shù)是由函數(shù)及復(fù)合而成的函數(shù),簡稱復(fù)合函數(shù),記作,其中u叫做中間變量。注:并不是任意兩個(gè)函數(shù)就能復(fù)合;復(fù)合函數(shù)還可以由更多函數(shù)構(gòu)成。例題:函數(shù)與函數(shù)是不能復(fù)合成一個(gè)函數(shù)的。因?yàn)閷?duì)于的定義域(∞,+∞)中的任何x值所對(duì)應(yīng)的u值(都大于或等于2),使都沒有定義。初等函數(shù)⑴、基本初等函數(shù):我們最常用的有五種基本初等函數(shù),分別是:指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)及反三角函數(shù)。下面我們用表格來把它們總結(jié)一下:函數(shù)名稱函數(shù)的記號(hào)函數(shù)的圖形函數(shù)的性質(zhì)指數(shù)函數(shù)a):不論x為何值,y總為正數(shù)。b):當(dāng)x=0時(shí),y=1.對(duì)數(shù)函數(shù)a):其圖形總位于y軸右側(cè),并過(1,0)點(diǎn)b):當(dāng)a>1時(shí),在區(qū)間(0,1)的值為負(fù);在區(qū)間(,+∞)的值為正;在定義域內(nèi)單調(diào)增.冪函數(shù)a為任意實(shí)數(shù)這里只畫出部分函數(shù)圖形的一部分。令a=m/na):當(dāng)m為偶數(shù)n為奇數(shù)時(shí),y是偶函數(shù)。b):當(dāng)m,n都是奇數(shù)時(shí),y是奇函數(shù)。c):當(dāng)m奇n偶時(shí),y在(∞,0)無意義.三角函數(shù)(正弦函數(shù))這里只寫出了正弦函數(shù)a):正弦函數(shù)是以2π為周期的周期函數(shù)b):正弦函數(shù)是奇函數(shù)且反三角函數(shù)(反正弦函數(shù))這里只寫出了反正弦函數(shù)a):由于此函數(shù)為多值函數(shù),因此我們此函數(shù)值限制在[π/2,π/2]上,并稱其為反正弦函數(shù)的主值.⑵、初等函數(shù):由基本初等函數(shù)與常數(shù)經(jīng)過有限次的有理運(yùn)算及有限次的函數(shù)復(fù)合所產(chǎn)生并且能用一個(gè)解析式表出的函數(shù)稱為初等函數(shù).例題:是初等函數(shù)。雙曲函數(shù)及反雙曲函數(shù)⑴、雙曲函數(shù):在應(yīng)用中我們經(jīng)常遇到的雙曲函數(shù)是:(用表格來描述)函數(shù)的名稱函數(shù)的表達(dá)式函數(shù)的圖形函數(shù)的性質(zhì)雙曲正弦a):其定義域?yàn)?(∞,+∞);b):是奇函數(shù);c):在定義域內(nèi)是單調(diào)增雙曲余弦a):其定義域?yàn)?(∞,+∞);b):是偶函數(shù);c):其圖像過點(diǎn)(0,1);雙曲正切a):其定義域?yàn)?(∞,+∞);b):是奇函數(shù);c):其圖形夾在水平直線y=1及y=1之間;在定域內(nèi)單調(diào)增;我們再來看一下雙曲函數(shù)與三角函數(shù)的區(qū)別:雙曲函數(shù)的性質(zhì)三角函數(shù)的性質(zhì)shx與thx是奇函數(shù),chx是偶函數(shù)sinx與tanx是奇函數(shù),cosx是偶函數(shù)它們都不是周期函數(shù)都是周期函數(shù)雙曲函數(shù)也有和差公式:⑵、反雙曲函數(shù):雙曲函數(shù)的反函數(shù)稱為反雙曲函數(shù).a):反雙曲正弦函數(shù) 其定義域?yàn)椋?∞,+∞);b):反雙曲余弦函數(shù) 其定義域?yàn)椋篬1,+∞);c):反雙曲正切函數(shù) 其定義域?yàn)椋?1,+1);數(shù)列的極限我們先來回憶一下初等數(shù)學(xué)中學(xué)習(xí)的數(shù)列的概念。 ⑴、數(shù)列:若按照一定的法則,有第一個(gè)數(shù)a1,第二個(gè)數(shù)a2,…,依次排列下去,使得任何一個(gè)正整數(shù)n對(duì)應(yīng)著一個(gè)確定的數(shù)an,那末,我們稱這列有次序的數(shù)a1,a2,…,an,…。第n項(xiàng)an叫做數(shù)列的一般項(xiàng)或通項(xiàng).注:我們也可以把數(shù)列an看作自變量為正整數(shù)n的函數(shù),即:an=,它的定義域是全體正整數(shù) ⑵、極限:極限的概念是求實(shí)際問題的精確解答而產(chǎn)生的。例:我們可通過作圓的內(nèi)接正多邊形,近似求出圓的面積。⑶、數(shù)列的極限:一般地,對(duì)于數(shù)列來說,若存在任意給定的正數(shù)ε(不論其多么小),總存在正整數(shù)N,使得對(duì)于n>N時(shí)的一切不等式都成立,那末就稱常數(shù)a是數(shù)列的極限,或者稱數(shù)列收斂于a .記作:或注:此定義中的正數(shù)ε只有任意給定,不等式才能表達(dá)出與a無限接近的意思。且定義中的正整數(shù)N與任意給定的正數(shù)ε是有關(guān)的,它是隨著ε的給定而選定的。⑷、數(shù)列的極限的幾何解釋:在此我們可能不易理解這個(gè)概念,下面我們再給出它的一個(gè)幾何解釋,以使我們能理解它。數(shù)列極限為a的一個(gè)幾何解釋:將常數(shù)a及數(shù)列在數(shù)軸上用它們的對(duì)應(yīng)點(diǎn)表示出來,再在數(shù)軸上作點(diǎn)a的ε鄰域即開區(qū)間(aε,a+ε),如下圖所示: 因不等式與不等式等價(jià),故當(dāng)n>N時(shí),所有的點(diǎn)都落在開區(qū)間(aε,a+ε)內(nèi),而只有有限個(gè)(至多只有N個(gè))在此區(qū)間以外。注:至于如何求數(shù)列的極限,我們在以后會(huì)學(xué)習(xí)到,這里我們不作討論。 ⑸、數(shù)列的有界性:對(duì)于數(shù)列,若存在著正數(shù)M,使得一切都滿足不等式││≤M,則稱數(shù)列是有界的,若正數(shù)M不存在,則可說數(shù)列是無界的。定理:若數(shù)列收斂,那末數(shù)列一定有界。注:有界的數(shù)列不一定收斂,即:數(shù)列有界是數(shù)列收斂的必要條件,但不是充分條件。例:數(shù)列 1,1,1,1,…,(1)n+1,… 是有界的,但它是發(fā)散的。函數(shù)的極限前面我們學(xué)習(xí)了數(shù)列的極限,已經(jīng)知道數(shù)列可看作一類特殊的函數(shù),即自變量取 1→∞內(nèi)的正整數(shù),若自變量不再限于正整數(shù)的順序,而是連續(xù)變化的,就成了函數(shù)。下面我們來學(xué)習(xí)函數(shù)的極限.函數(shù)的極值有兩種情況:a):自變量無限增大;b):自變量無限接近某一定點(diǎn)x0,如果在這時(shí),函數(shù)值無限接近于某一常數(shù)A,就叫做函數(shù)存在極值。我們已知道函數(shù)的極值的情況,那么函數(shù)的極限如何呢 ?下面我們結(jié)合著數(shù)列的極限來學(xué)習(xí)一下函數(shù)極限的概念!⑴、函數(shù)的極限(分兩種情況)a):自變量趨向無窮大時(shí)函數(shù)的極限定義:設(shè)函數(shù),若對(duì)于任意給定的正數(shù)ε(不論其多么小),總存在著正數(shù)X,使得對(duì)于適合不等式 的一切x,所對(duì)應(yīng)的函數(shù)值都滿足不等式 那末常數(shù)A就叫做函數(shù)當(dāng)x→∞時(shí)的極限,記作:下面我們用表格把函數(shù)的極限與數(shù)列的極限對(duì)比一下:數(shù)列的極限的定義函數(shù)的極限的定義存在數(shù)列與常數(shù)A,任給一正數(shù)ε>0,總可找到一正整數(shù)N,對(duì)于n>N的所有都滿足<ε則稱數(shù)列,當(dāng)x→∞時(shí)收斂于A記:。存在函數(shù)與常數(shù)A,任給一正數(shù)ε>0,總可找到一正數(shù)X,對(duì)于適合的一切x,都滿足,函數(shù)當(dāng)x→∞時(shí)的極限為A,記:。b):自變量趨向有限值時(shí)函數(shù)的極限。我們先來看一個(gè)例子.例:函數(shù),當(dāng)x→1時(shí)函數(shù)值的變化趨勢如何?函數(shù)在x=,在數(shù)軸上任何一個(gè)有限的范圍內(nèi),都有無窮多個(gè)點(diǎn),為此我們把x→1時(shí)函數(shù)值的變化趨勢用表列出,如下圖:從中我們可以看出x→1時(shí),→,:只要與2只差一個(gè)微量ε,就一定可以找到一個(gè)δ,當(dāng)<δ時(shí)滿足<δ定義:設(shè)函數(shù)在某點(diǎn)x0的某個(gè)去心鄰域內(nèi)有定義,且存在數(shù)A,如果對(duì)任意給定的ε(不論其多么小),總存在正數(shù)δ,當(dāng)0<<δ時(shí),<ε則稱函數(shù)當(dāng)x→x0時(shí)存在極限,且極限為A,記:。注:在定義中為什么是在去心鄰域內(nèi)呢?這是因?yàn)槲覀冎挥懻搙→x0的過程,與x=x0出的情況無關(guān)。此定義的核心問題是:對(duì)給出的ε,是否存在正數(shù)δ,使其在去心鄰域內(nèi)的x均滿足不等式。有些時(shí)候,我們要用此極限的定義來證明函數(shù)的極限為 A,其證明方法是怎樣的呢? a):先任取ε>0; b):寫出不等式<ε;c):解不等式能否得出去心鄰域0<<δ,若能; d):則對(duì)于任給的ε>0,總能找出δ,當(dāng)0<<δ時(shí),<ε成立,因此函數(shù)極限的運(yùn)算規(guī)則⑴、函數(shù)極限的運(yùn)算規(guī)則 若已知x→x0(或x→∞)時(shí),.則: 推論: 在求函數(shù)的極限時(shí),利用上述規(guī)則就可把一個(gè)復(fù)雜的函數(shù)化為若干個(gè)簡單的函數(shù)來求極限。函數(shù)極限的存在準(zhǔn)則學(xué)習(xí)函數(shù)極限的存在準(zhǔn)則之前,我們先來學(xué)習(xí)一下左、右的概念。 我們先來看一個(gè)例子:例:符號(hào)函數(shù)為對(duì)于這個(gè)分段函數(shù),、右極限的概念。定義:如果x僅從左側(cè)(x<x0)趨近x0時(shí),函數(shù)與常量A無限接近,:如果x僅從右側(cè)(x>x0)趨近x0時(shí),函數(shù)與常量A無限接近,:注:只有當(dāng)x→x0時(shí),函數(shù)的左、右極限存在且相等,方稱在x→x0時(shí)有極限函數(shù)極限的存在準(zhǔn)則 準(zhǔn)則一:對(duì)于點(diǎn)x0的某一鄰域內(nèi)的一切x,x0點(diǎn)本身可以除外(或絕對(duì)值大于某一正數(shù)的一切x)有≤≤,且,那末存在,且等于A注:此準(zhǔn)則也就是夾逼準(zhǔn)則.準(zhǔn)則二:單調(diào)有界的函數(shù)必有極限.注:有極限的函數(shù)不一定單調(diào)有界兩個(gè)重要的極限 一:注:其中e為無理數(shù),它的值為:e=...二:例題:求解答:令,則x=2t,因?yàn)閤→∞,故t→∞,則注:解此類型的題時(shí),一定要注意代換后的變量的趨向情況,象x→∞時(shí),若用t代換1/x,則t→0.無窮大量和無窮小量無窮大量我們先來看一個(gè)例子:已知函數(shù),當(dāng)x→0時(shí),可知,我們把這種情況稱為趨向無窮大。為此我們可定義如下:設(shè)有函數(shù)y=,在x=x0的去心鄰域內(nèi)有定義,對(duì)于任意給定的正數(shù)N(一個(gè)任意大的數(shù)),總可找到正數(shù)δ,當(dāng)時(shí),成立,則稱函數(shù)當(dāng)時(shí)為無窮大量。記為:(表示為無窮大量,實(shí)際它是沒有極限的)同樣我們可以給出當(dāng)x→∞時(shí),無限趨大的定義:設(shè)有函數(shù)y=,當(dāng)x充分大時(shí)有定義,對(duì)于任意給定的正數(shù)N(一個(gè)任意大的數(shù)),總可以找到正數(shù)M,當(dāng)時(shí),成立,則稱函數(shù)當(dāng)x→∞時(shí)是無窮大量,記為:無窮小量以零為極限的變量稱為無窮小量。定義:設(shè)有函數(shù),對(duì)于任意給定的正數(shù)ε(不論它多么小),總存在正數(shù)δ(或正數(shù)M),使得對(duì)于適合不等式(或)的一切x,所對(duì)應(yīng)的函數(shù)值滿足不等式,則稱函數(shù)當(dāng)(或x→∞)時(shí) 為無窮小量.記作:(或)注意:無窮大量與無窮小量都是一個(gè)變化不定的量,不是常量,只有0可作為無窮小量的唯一常量。無窮大量與無窮小量的區(qū)別是:前者無界,后者有界,前者發(fā)散,.關(guān)于無窮小量的兩個(gè)定理定理一:如果函數(shù)在(或x→∞)時(shí)有極限A,則差是當(dāng)(或x→∞)時(shí)的無窮小量,反之亦成立。定理二:無窮小量的有利運(yùn)算定理a):有限個(gè)無窮小量的代數(shù)和仍是無窮小量; b):有限個(gè)無窮小量的積仍是無窮小量;c):常數(shù)與無窮小量的積也是無窮小量.無窮小量的比較通過前面的學(xué)習(xí)我們已經(jīng)知道,兩個(gè)無窮小量的和、?好!接下來我們就來解決這個(gè)問題,這就是我們要學(xué)的兩個(gè)無窮小量的比較。定義:設(shè)α,β都是時(shí)的無窮小量,且β在x0的去心領(lǐng)域內(nèi)不為零,a):如果,則稱α是β的高階無窮小或β是α的低階無窮小;b):如果,則稱α和β是同階無窮小;c):如果,則稱α和β是等價(jià)無窮小,記作:α∽β(α與β等價(jià))例:因?yàn)?,所以?dāng)x→0時(shí),x與3x是同階無窮?。灰?yàn)?,所以?dāng)x→0時(shí),x2是3x的高階無窮?。灰?yàn)?,所以?dāng)x→0時(shí),sinx與x是等價(jià)無窮小。等價(jià)無窮小的性質(zhì)設(shè),且存在,則.注:這個(gè)性質(zhì)表明:求兩個(gè)無窮小之比的極限時(shí),分子及分母都可用等價(jià)無窮小來代替,因此我們可以利用這個(gè)性質(zhì)來簡化求極限問題。例題:求 此題不能將其展開成兩個(gè)函數(shù)差的形式,因?yàn)閄\(3X)^3的極限為無窮大,極限不存在,不符合等價(jià)無窮小的條件存在解答:注:注:從這個(gè)例題中我們可以發(fā)現(xiàn),作無窮小變換時(shí),要代換式中的某一項(xiàng),不能只代換某個(gè)因子。函數(shù)的一重要性質(zhì)——連續(xù)性在自然界中有許多現(xiàn)象,如氣溫的變化,就是函數(shù)的連續(xù)性在定義函數(shù)的連續(xù)性之前我們先來學(xué)習(xí)一個(gè)概念——增量設(shè)變量x從它的一個(gè)初值x1變到終值x2,終值與初值的差x2x1就叫做變量x的增量,記為:△x即:△x=x2x1 增量△x可正可負(fù).我們再來看一個(gè)例子:函數(shù)在點(diǎn)x0的鄰域內(nèi)有定義,當(dāng)自變量x在領(lǐng)域內(nèi)從x0變到x0+△x時(shí),函數(shù)y相應(yīng)地從變到,其對(duì)應(yīng)的增量為:這個(gè)關(guān)系式的幾何解釋如下圖:現(xiàn)在我們可對(duì)連續(xù)性的概念這樣描述:如果當(dāng)△x趨向于零時(shí),函數(shù)y對(duì)應(yīng)的增量△y也趨向于零,即:,那末就稱函數(shù)在點(diǎn)x0處連續(xù)。函數(shù)連續(xù)性的定義:設(shè)函數(shù)在點(diǎn)x0的某個(gè)鄰域內(nèi)有定義,如果有稱函數(shù)在點(diǎn)x0處連續(xù),且稱x0為函數(shù)的的連續(xù)點(diǎn).下面我們結(jié)合著函數(shù)左、右極限的概念再來學(xué)習(xí)一下函數(shù)左、右連續(xù)的概念:設(shè)函數(shù)在區(qū)間(a,b]內(nèi)有定義,如果左極限存在且等于,即:=,[a,b)內(nèi)有定義,如果右極限存在且等于,即:=,那末我們就稱函數(shù)在點(diǎn)a右連續(xù).一個(gè)函數(shù)在開區(qū)間(a,b)內(nèi)每點(diǎn)連續(xù),則為在(a,b)連續(xù),若又在a點(diǎn)右連續(xù),b點(diǎn)左連續(xù),則在閉區(qū)間[a,b]連續(xù),如果在整個(gè)定義域內(nèi)連續(xù),則稱為連續(xù)函數(shù)。注:一個(gè)函數(shù)若在定義域內(nèi)某一點(diǎn)左、右都連續(xù),則稱函數(shù)在此點(diǎn)連續(xù),否則在此點(diǎn)不連續(xù).注:連續(xù)函數(shù)圖形是一條連續(xù)而不間斷的曲線。通過上面的學(xué)習(xí)我們已經(jīng)知道函數(shù)的連續(xù)性了,同時(shí)我們可以想到若函數(shù)在某一點(diǎn)要是不連續(xù)會(huì)出現(xiàn)什么情形呢?接著我們就來學(xué)習(xí)這個(gè)問題:函數(shù)的間斷點(diǎn)函數(shù)的間斷點(diǎn)定義:我們把不滿足函數(shù)連續(xù)性的點(diǎn)稱之為間斷點(diǎn). 它包括三種情形:a):在x0無定義;b):在x→x0時(shí)無極限;c):在x→x0時(shí)有極限但不等于;下面我們通過例題來學(xué)習(xí)一下間斷點(diǎn)的類型:例1: 正切函數(shù)在處沒有定義,所以點(diǎn)是函數(shù)的間斷點(diǎn),因,我們就稱為函數(shù)的無窮間斷點(diǎn);例2:函數(shù)在點(diǎn)x=0處沒有定義;故當(dāng)x→0時(shí),函數(shù)值在1與+1之間變動(dòng)無限多次,我們就稱點(diǎn)x=0叫做函數(shù)的振蕩間斷點(diǎn); 例3:函數(shù)當(dāng)x→0時(shí),左極限,右極限,從這我們可以看出函數(shù)左、右極限雖然都存在,但不相等,故函數(shù)在點(diǎn)x=0是不存在極限。我們還可以發(fā)現(xiàn)在點(diǎn)x=0時(shí),函數(shù)值產(chǎn)生跳躍現(xiàn)象,為此我們把這種間斷點(diǎn)稱為跳躍間斷點(diǎn);我們把上述三種間斷點(diǎn)用幾何圖形表示出來如下:可去
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1