【總結(jié)】全等三角形綜合復(fù)習(xí)知識點一:證明三角形全等的思路通過對問題的分析,將解決的問題歸結(jié)到證明某兩個三角形的全等后,采用哪個全等判定定理加以證明,可以按下圖思路進(jìn)行分析:切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。思路分析:從結(jié)論入手,全等條件只有;由兩邊同時減去得到,又得到一個全等條件。還缺
2025-06-07 15:01
【總結(jié)】......相似三角形知識點大總結(jié)知識點1有關(guān)相似形的概念(1)形狀相同的圖形叫相似圖形,在相似多邊形中,最簡單的是相似三角形.(2)如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,這兩個多邊形叫做相似多邊
2025-06-25 00:16
【總結(jié)】初中數(shù)學(xué)三角形知識點 初中數(shù)學(xué)三角形面積公式 由不在同一直線上的三條線段首尾順次連接所組成的封閉圖形叫做三角形。平面上三條直線或球面上三條弧線所圍成的圖形。三條直線所圍成的圖形叫平面三...
2025-11-24 22:29
【總結(jié)】全等三角形復(fù)習(xí)鞏固1復(fù)習(xí)目標(biāo)1、理解全等三角形的有關(guān)概念和性質(zhì)。2、掌握尋找全等三角形對應(yīng)邊、對應(yīng)角的方法。3、發(fā)展空間觀念,培養(yǎng)幾何直覺。4、運用全等三角形的性質(zhì)解決問題。一、有關(guān)概念:全等三角形:能夠完全重合的兩個三角形叫~.觀察:把△ABC沿直線BC平移,得到△DEF.把△ABC沿直線BC翻折180o,
2025-04-16 23:03
【總結(jié)】......全等三角形動點問題一)、知識回顧動態(tài)幾何題,是指以幾何知識和幾何圖形為背景,滲透運動變化觀點的一類試題;而通過對幾何圖形運動變化,使同學(xué)們經(jīng)歷由觀察、想象、推理等發(fā)現(xiàn)、探索的過程,是中考數(shù)學(xué)試題中,考查創(chuàng)新
2025-03-24 07:39
【總結(jié)】......全等三角形—動點專題1.如圖,在長方形ABCD中,AB=CD=6cm,BC=10cm,點P從點B出發(fā),以2cm/秒的速度沿BC向點C運動,設(shè)點P的運動時間為t秒:(1)PC=cm.(用t的代數(shù)式表示)(2
【總結(jié)】第1章全等三角形(復(fù)習(xí))知識回顧-全等三角形1、定義-能夠完全重合的兩個三角形叫做全等三角形。2、性質(zhì)-全等三角形的對應(yīng)邊、對應(yīng)角相等。3、一個圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置發(fā)生了變化,但是它的形狀和大小并沒有改變。即:平移、翻折、旋轉(zhuǎn)前后的兩個圖形全等。尋找對應(yīng)元素的規(guī)律:
2024-12-28 16:53
【總結(jié)】全等三角形第一章——復(fù)習(xí)課八年級數(shù)學(xué)上冊1、掌握全等三角形的概念和性質(zhì)2、選擇合適的方法判定三角形全等。3、用三角形全等說明角相等,線段相等。解決問題。ABC什么叫全等三角形?能完全重合的兩個三角形叫做全等三角形。AˊBˊCˊ注意:兩個三角形全等在表示時把對應(yīng)頂點
2025-07-26 19:16
【總結(jié)】1.任意角的三角函數(shù)的定義:設(shè)是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關(guān),而與終邊上點P的位置無關(guān)。:(一全二正弦,三切四余弦)+ +- ?。 。 。 。 。 。 。 。 。?.同
2025-06-22 22:24
【總結(jié)】1.已知:如圖,AB⊥BC,AD⊥DC,垂足分別為B、D,AC平分∠BCD,求證:BC=DCBCDA,AB=AC,BD⊥AC,CE⊥AB,垂足分別為D、E,BD與CE相交于點F,求證:BE=CD。BCEADF我們已學(xué)了三角形全等的哪些方法?
2025-10-29 02:33
【總結(jié)】全等三角形的復(fù)習(xí)八年級數(shù)學(xué)第十三章全等形全等三角形性質(zhì)條件應(yīng)用全等三角形對應(yīng)邊相等全等三角形對應(yīng)角相等全等三角形的面積相等SSSSASASAAASHL解決問題角的平分線的性質(zhì)角平分線上的一點到角的兩邊距離相等到角的兩邊的距
2025-10-29 01:04
【總結(jié)】?公理1:三邊對應(yīng)相等的兩個三角形全等(SSS).公理2:兩邊及其夾角對應(yīng)相等的兩個三角形全等(SAS).公理3:兩角及其夾邊對應(yīng)相等的兩個三角形全等(ASA).推論:兩角及其中一角的對邊對應(yīng)相等的兩個三角形全等(AAS)如圖,要證明△AC
【總結(jié)】第一章解三角形(一)解三角形:1、正弦定理:在中,、、分別為角、、的對邊,,則有(為的外接圓的半徑)2、正弦定理的變形公式:①,,;②,,;③;3、三角形面積公式:.4、余弦定理:在中,有,推論:基礎(chǔ)練習(xí)一選擇題1.在△ABC中,已知2B=A+C,則B=( )A.30°B.45°C.60
2025-08-05 16:33
【總結(jié)】......1.任意角的三角函數(shù)的定義:設(shè)是任意一個角,P是的終邊上的任意一點(異于原點),它與原點的距離是,那么,三角函數(shù)值只與角的大小有關(guān),而與終邊上點P的位置無關(guān)。:(一全二正弦,三切四余弦)+
2025-06-22 22:17
【總結(jié)】合作中學(xué)習(xí)學(xué)習(xí)中創(chuàng)新全等三角形復(fù)習(xí)中考總復(fù)習(xí)之--學(xué)習(xí)目標(biāo):通過概念的復(fù)習(xí)和典型例題評析,使學(xué)生掌握三角形全等的判定、性質(zhì)及其應(yīng)用。學(xué)習(xí)重點:典型例型評析。學(xué)習(xí)難點:學(xué)生綜合能力的提高。全等三角形的性質(zhì):對應(yīng)邊、對應(yīng)角相等。全等三角形的判定:知識點一般三角形全等的判定:
2025-01-12 22:52