【總結(jié)】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【總結(jié)】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【總結(jié)】教學(xué)目標(biāo):,一元二次及可化為一元一次或二次的分式及高次不等式一.含絕對值的不等式的解法|x|a(a0)1、利用公式性質(zhì):2、兩邊平方:(兩邊都是正數(shù))3、利用幾何意義:4、零點分段討論:例4:|x-2|+|2x+1|5析:①x-②
2024-11-07 02:27
【總結(jié)】01-1-2-301-1-2-301-1-2-301-1-2-3九年級二輪專題復(fù)習(xí)材料專題四:不等式及不等式組【近3年臨沂市中考試題】1.(2022?臨沂,T5,3分)不等式組-2≤11x??的解集,在數(shù)軸上表示正確的是
2025-01-10 13:19
【總結(jié)】......含參不等式專題訓(xùn)練1.對任意的實數(shù),不等式恒成立,則實數(shù)的取值范圍是()A.B.C.D.2.在上運算:,若對任意實數(shù)成立,則().A.B.C.
2025-03-24 23:42
【總結(jié)】2011年中考復(fù)習(xí)二輪材料函數(shù)、方程、不等式綜合應(yīng)用專題李建敏一、專題詮釋函數(shù)思想就是用聯(lián)系和變化的觀點看待或提出數(shù)學(xué)對象之間的數(shù)量關(guān)系。函數(shù)是貫穿在中學(xué)數(shù)學(xué)中的一條主線;函數(shù)思想方法主要包括建立函數(shù)模型解決問題的意識,函數(shù)概念、性質(zhì)、圖象的靈活應(yīng)用等。函數(shù)、方程、不等式的結(jié)合,是函數(shù)某一變量值一定或在某一范圍下的方程或不等式,體現(xiàn)了一般到特殊的觀念。也體現(xiàn)了
2025-04-16 12:35
【總結(jié)】函數(shù)導(dǎo)數(shù)與不等式專題一.利用切線與導(dǎo)數(shù)之間的聯(lián)系解決不等式有關(guān)問題1.(2013年高考四川)已知函數(shù),其中是實數(shù).設(shè),為該函數(shù)圖象上的兩點,且.(1)指出函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)的圖象在點處的切線互相垂直,且,證明:;(3)若函數(shù)的圖象在點處的切線重合,求的取值范圍.2.(2014屆江西省新余)已知函數(shù),.(1)若曲
2025-03-24 12:16
【總結(jié)】方程與不等式專題?!∫唬x擇題(共12小題)1.使得關(guān)于x的不等式組有解,且使分式方程有非負(fù)整數(shù)解的所有的m的和是( ?。〢.﹣1 B.2 C.﹣7 D.02.若關(guān)于x的一元二次方程kx2﹣6x+9=0有兩個不相等的實數(shù)根,則k的取值范圍( ?。〢.k<1且k≠0 B.k≠0 C.k<1 D.k>13.不論x,y取何實數(shù),代數(shù)式x2﹣4x+y2﹣6y+13總是(
2025-06-23 21:43
【總結(jié)】天星教育網(wǎng)版權(quán)所有高三數(shù)學(xué)第二輪復(fù)習(xí)專題——不等式一、本章知識結(jié)構(gòu):實數(shù)的性質(zhì)均值不等式不等式的性質(zhì)不等式的應(yīng)用不等式的證明不等式的解法函數(shù)性質(zhì)的討論最值的計算與討論實際應(yīng)用問題比較法綜合法分析法其它方法一元一次不等式一元二次不等式
2025-06-07 19:46
【總結(jié)】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2024-10-19 08:39
【總結(jié)】集合的運算與不等式的解法一.集合的運算:1.集合的表示方法:①列舉法②描述法例1:1指出下列集合中的元素是由什么構(gòu)成的A={x|x2-1=0}B={x2-1=0}C={y|y=x2,x∈R}D={(x,y)|y=x2,x∈R}2已知方程組y=-4x
2024-11-10 01:24
【總結(jié)】不等式性質(zhì)兩個實數(shù)大小的比較ba1ba)2(ba1ba)1(,0b,a???????則若比商法比差法0baba0baba????????對稱性abba???傳遞性cacb,ba????加法單調(diào)性cbcaba?????移項法則bcacba?????乘法
2024-11-22 04:19
【總結(jié)】第7講一元一次方程養(yǎng)鹿中學(xué)周忠海復(fù)習(xí)目的:1、了解等式的概念,掌握等式的基本性質(zhì)。2、了解方程、方程的解及解方程的概念。3、了解一元一次方程及其標(biāo)準(zhǔn)形式、最簡形式,掌握一元一次方程的解法,并會檢驗。4、會列一元一次方程解應(yīng)用題,并根據(jù)應(yīng)用題的實際意義檢驗求值是否合理??键c透視考點課標(biāo)要求知識與技能目標(biāo)了解理解掌握靈活
2025-04-17 02:17
【總結(jié)】《不等式》復(fù)習(xí)小結(jié)(導(dǎo)學(xué)案)(集美中學(xué)楊正國)一、學(xué)習(xí)目標(biāo).會用不等式(組)表示不等關(guān)系;.熟悉不等式的性質(zhì),能應(yīng)用不等式的性質(zhì)求解“范圍問題”,會用作差法比較大?。唬畷庖辉尾坏仁?,熟悉一元二次不等式、一元二次方程和二次函數(shù)的關(guān)系;.會作二元一次不等式(組)表示的平面區(qū)域,會解簡單的線性規(guī)劃問題;.明確均值不等式及其成立條件,會靈活應(yīng)用均值不等式證明或求解
2025-04-16 12:30
【總結(jié)】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11