【總結(jié)】第一篇:基本不等式說(shuō)課 基本不等式 一、教材分析 本節(jié)課是人教版高中數(shù)學(xué)必修5中第三章第4節(jié)的內(nèi)容。二元均值不等式。這是在學(xué)習(xí)了“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對(duì)不等...
2025-11-06 02:54
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計(jì) 基本不等式 一、教學(xué)設(shè)計(jì)理念: 注重學(xué)生自主、合作、探究學(xué)習(xí),、教學(xué)設(shè)計(jì)思路: 這節(jié)課的目標(biāo)定位分為三個(gè)層面: 第一層面:知識(shí)與技能層面,①了解兩個(gè)正數(shù)的算術(shù)平均...
2025-11-05 13:44
【總結(jié)】基本不等式在求最值中的應(yīng)用與完善楊亞軍函數(shù)的最值是函數(shù)這一章節(jié)中很重要的部分,它的重要性不僅在題型的多樣、方法的靈活上,更主要的是其在實(shí)際生活及生產(chǎn)實(shí)踐中的應(yīng)用。高考應(yīng)用題幾乎都與最值問(wèn)題有關(guān),,才能更好地去解決實(shí)際應(yīng)用問(wèn)題。一、基本不等式的內(nèi)容及使用要點(diǎn)1、二元基本不等式:①a,b∈R時(shí),a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)“=”號(hào)成立);②a,b≥0時(shí),a+b
2025-08-05 01:31
【總結(jié)】基本不等式作業(yè)(一)1.下列不等式成立的是()A.a(chǎn)bba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2025-11-14 13:45
【總結(jié)】基本不等式(第一課時(shí))教學(xué)設(shè)計(jì)及反思?人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)(必修5)》中的“基本不等式”。下面把這節(jié)課的教學(xué)設(shè)計(jì)、教后反思記錄下來(lái),愿與同行研討?!盎静坏仁健笔潜匦?的重點(diǎn)內(nèi)容,在課本封面上就體現(xiàn)出來(lái)了。它是在學(xué)完“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對(duì)不等式的進(jìn)一步研究.在不等式的證明和求最值過(guò)程中有著廣泛的應(yīng)用。求最值又是
2025-08-05 04:52
【總結(jié)】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們?cè)谑褂没静坏仁降倪^(guò)程中往往會(huì)遇到各種各樣的題型而覺(jué)得無(wú)從入手?,F(xiàn)結(jié)合教學(xué)中實(shí)際遇到的問(wèn)題,淺談利用基本不等式求最值的各類(lèi)題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)記為“和定積最大”(2)當(dāng)且時(shí),,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,簡(jiǎn)
2025-07-23 12:30
【總結(jié)】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實(shí)數(shù)、、滿足,則的最大值為▲.3、已知正實(shí)數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實(shí)數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實(shí)數(shù),若則的最大值是.6、(2010
2025-06-24 16:38
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-均值不等式》教學(xué)目標(biāo)?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定理求極值。了解均值不等式在證明不等式中的簡(jiǎn)單應(yīng)用。?教學(xué)重點(diǎn):?推導(dǎo)并掌握兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個(gè)重要定理;利用均值定
2025-08-05 04:41
【總結(jié)】新希望培訓(xùn)學(xué)校MATHMATICS基本不等式一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)
2025-03-24 03:55
【總結(jié)】第一篇:基本不等式說(shuō)課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說(shuō)課稿,希望對(duì)大家有幫助! 基本不等式說(shuō)課稿1 尊敬的各位考官大家好,我是今天的X號(hào)考生...
2025-10-19 11:36
【總結(jié)】第5課時(shí)基本不等式,能借助幾何圖形說(shuō)明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開(kāi)的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客.在正方形ABCD中有4個(gè)全等的直角三角形,設(shè)直角三
2025-11-29 02:37
【總結(jié)】基本不等式習(xí)題課一知識(shí)復(fù)習(xí)1.基本不等式:對(duì)任意a、b∈____,有a+b2≥ab成立,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào).(1)x、y∈(0,+∞),且xy=P(定值),那么當(dāng)x=y(tǒng)時(shí),x+y有最___值2P.(2)x、y∈(0,+∞),且x+
2025-08-05 04:43
【總結(jié)】第一篇:基本不等式的教學(xué)設(shè)計(jì) 《基本不等式》教學(xué)設(shè)計(jì) 基本不等式 教材分析 本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和不等式性質(zhì),掌握了不等式性質(zhì)的基礎(chǔ)上展開(kāi)的,作為重要的基本不等式之一,為后續(xù)的學(xué)習(xí)奠...
2025-10-15 17:31
【總結(jié)】第一篇:基本不等式練習(xí)題 重難點(diǎn):了解基本不等式的證明過(guò)程;會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.考綱要求:①了解基本不等式的證明過(guò)程. ②會(huì)用基本不等式解決簡(jiǎn)單的最大(?。┲祮?wèn)題.經(jīng)典例...
2025-10-20 01:07
【總結(jié)】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38