【總結(jié)】數(shù)列的求和訓(xùn)練1.錯(cuò)位相減法求和:如:1.求和:2.裂項(xiàng)相消法求和:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差、正負(fù)相消剩下首尾若干項(xiàng)。,若,則等于(?。〢.1B.C.D.,求前項(xiàng)的和;=,設(shè),求.4.求。,.(1)求數(shù)列的通項(xiàng)公式及
2025-03-25 02:52
【總結(jié)】數(shù)列的通項(xiàng)公式是數(shù)列的核心之一,它如同函數(shù)的解析式一樣,有解析式便可研究其性質(zhì)等,而有了數(shù)列的通項(xiàng)公式,便可以研究數(shù)列的性質(zhì)及前n項(xiàng)和等,所以求數(shù)列的通項(xiàng)公式是研究數(shù)列的重中之重,現(xiàn)將求數(shù)列的通項(xiàng)公式幾種常見類型及方法總結(jié)如下:求數(shù)列的通項(xiàng)公式幾種常見類型及方法德興一中汪利群一、已知數(shù)列類型,利用公式法求
2024-11-18 18:02
【總結(jié)】n項(xiàng)和泰姬陵坐落于印度距首都新德里200多公里外的北方邦的阿格拉市,是十七世紀(jì)莫臥兒帝國皇帝沙杰罕為紀(jì)念其愛妃所建,她宏偉壯觀,純白大理石砌建而成的主體建筑令人心醉神迷,陵寢以寶石鑲嵌,圖案細(xì)致,絢麗奪目、美麗無比,令人叫絕.成為世界八大奇跡之一.問題呈現(xiàn)傳說陵寢中有一個(gè)三角形圖案,以相同大
2025-08-04 18:20
【總結(jié)】《等比數(shù)列的前n項(xiàng)和公式》教學(xué)設(shè)計(jì)說明河南省開封市第二十五中學(xué) 姜黎黎《等比數(shù)列前n項(xiàng)和》是人教版必修5第二章數(shù)列中第五節(jié)第一課時(shí)的內(nèi)容。下面,我從教材分析,情境創(chuàng)設(shè)、公式推導(dǎo),公式應(yīng)用,教學(xué)反思等幾個(gè)方面,談?wù)勛约旱墓芨Q之見,與各位老師探討。?教材分析等比數(shù)列的前n項(xiàng)和是“等差數(shù)列的前n項(xiàng)和”與“等比數(shù)列”內(nèi)容的延續(xù)、是進(jìn)一步學(xué)習(xí)數(shù)列知識(shí)和解決一類求和問題的重要
2025-05-02 13:16
【總結(jié)】數(shù)列的通項(xiàng)公式與求和練習(xí)1練習(xí)2練習(xí)3練習(xí)4練習(xí)5練習(xí)6練習(xí)7練習(xí)8等比數(shù)列的前項(xiàng)和Sn=2n-1,則練習(xí)9
2025-06-19 23:52
【總結(jié)】等差數(shù)列的前n項(xiàng)和高一數(shù)學(xué)必修五第二章《數(shù)列》復(fù)習(xí)鞏固1.an=am+(n-m)d,在等差數(shù)列{an}中,mnpqaaaa????m+n=p+qa1+an=a2+an-1=a3+an-2=….例題講解例1在等差數(shù)列{an}中
2025-08-01 13:48
【總結(jié)】(理解等差數(shù)列的概念/掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式/了解等差數(shù)列與一次函數(shù)的關(guān)系)第五單元數(shù)列等差數(shù)列及其前n項(xiàng)和1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列(arithmeticsequence),這個(gè)常數(shù)就叫做等差數(shù)列
2025-05-12 17:18
【總結(jié)】等比數(shù)列的前n項(xiàng)和古印度國王舍罕王打算獎(jiǎng)賞國際象棋的發(fā)明人——宰相西薩·班·達(dá)依爾。國王問他想要什么,發(fā)明者說:“請(qǐng)?jiān)诘谝粋€(gè)格子里放上1粒麥子,在第二個(gè)格子里放上2粒麥子,在第三個(gè)格子里放上4粒麥子,在第四個(gè)格子里放上8粒麥子,依此類推,每個(gè)格子里放的麥粒數(shù)都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子
2025-07-21 17:18
【總結(jié)】等差數(shù)列的前n項(xiàng)和一.新課引入一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支。這個(gè)V形架上共放著多少支鉛筆?問題就是“”?1004321???????這是小學(xué)時(shí)就知道的一個(gè)故事,高斯的算法非常高明,回憶他是怎樣算的?
2024-11-17 19:18
【總結(jié)】等差數(shù)列的前n項(xiàng)和一、數(shù)列前n項(xiàng)和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a(bǔ)1+a2+a3+…+an叫做數(shù)列{an}的前n項(xiàng)和,記作Sn.二、問題A?如圖,建筑工地上一堆圓木,從上到下每層的數(shù)目分別為1,2,3,……,10.問共有多少根
2025-10-07 20:23
【總結(jié)】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和n112111??????nnqaqaqaaS
2025-08-16 01:37
【總結(jié)】等比數(shù)列的前n項(xiàng)和目的要求?1.掌握等比數(shù)列的前n項(xiàng)和公式。?2.掌握前n項(xiàng)和公式的推導(dǎo)方法。?3.對(duì)前n項(xiàng)和公式能進(jìn)行簡(jiǎn)單應(yīng)用。重點(diǎn)難點(diǎn)?重點(diǎn):等比數(shù)列前n項(xiàng)和公式的推導(dǎo)與應(yīng)用。?難點(diǎn):前n項(xiàng)和公式的推導(dǎo)思路的尋找。重點(diǎn)難點(diǎn)復(fù)
2024-11-17 17:13
【總結(jié)】第3講等比數(shù)列及其前n項(xiàng)和【2022年高考會(huì)這樣考】1.以等比數(shù)列的定義及等比中項(xiàng)為背景,考查等比數(shù)列的判定.2.考查通項(xiàng)公式、前n項(xiàng)和公式以及性質(zhì)的應(yīng)用.【復(fù)習(xí)指導(dǎo)】本節(jié)復(fù)習(xí)時(shí),緊扣等比數(shù)列的定義,推導(dǎo)相關(guān)的公式與性質(zhì),通過基本題型的訓(xùn)練,掌握通性、通法.基礎(chǔ)梳理1.等比數(shù)列的定義如果一個(gè)數(shù)列從
2025-04-30 04:33
【總結(jié)】等比數(shù)列的前n項(xiàng)和第1課時(shí)一、新課導(dǎo)入:即,①,②②-①得即.由此對(duì)于一般的等比數(shù)列,其前項(xiàng)和,如何化簡(jiǎn)?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2025-10-07 20:25
【總結(jié)】安宜高級(jí)中學(xué)盧其明(第二課時(shí))知識(shí)回顧::an=a1+(n-1)d;:(1)an-am=(n-m)d;(2)若m+n=p+q,則am+an=ap+aq。n項(xiàng)和公式:例{an}的前10項(xiàng)的和是30,前20項(xiàng)的和是100,求前30項(xiàng)的和。變題{an}的前m
2024-11-09 12:47