【總結】兩角和與差的三角函數測試【課內四基達標】一、選擇題sinαsinβ+cosαcosβ=0,那么sinαcosα+sinβcosβ的值等于()C.222.(°+°)72log的值是()B.77f(x)=
2025-11-21 07:39
【總結】1.同角三角函數關系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數的關系.1.同角三角函數的平方關系是________________,使此式成立
2024-12-05 10:17
【總結】課題:三角函數的誘導公式(1)班級:姓名:一:學習目標1.通過學生的探究,明了三角函數的誘導公式的來龍去脈,理解誘導公式的推導過程;2.通過誘導公式的具體運用,熟練正確地運用公式解決一些三角函數的求值、化簡和證明問題;二:課前預習教學重點:
2025-11-11 01:06
【總結】1.三角函數的應用情景:如圖,某大風車的半徑為2m,每12s旋轉一周,它的最低點O離地面m,風車圓周上一點A從最低點O開始,運動t(s)后與地面的距離為h(m).思考:你能求出函數h=f(t)的關系式嗎?你能畫出它的圖象嗎?1.已知函數類型求解析式的方法是________.答案:待
2024-12-05 10:16
【總結】(第一課時)終邊相同的角同一三角函數值相等.)(tan)2tan(cos)2cos(sin)2sin(zkkkk???????????????????誘導公式一:利用誘導公式一,我們可以把任意角三角函數的求值問題轉化為00~3600的求值問題.
2025-11-08 17:35
2024-12-09 03:46
【總結】三角函數的誘導公式1一、選擇題1.如果|cosx|=cos(x+π),則x的取值集合是()A.-+2kπ≤x≤+2kπB.-+2kπ≤x≤+2kπC.+2kπ≤x≤+2kπD.(2k+1)π≤x≤2(k+1)π(以上k∈Z)2.sin(-)的值是()A. B.- C. D.-3.下列三角函數:①sin(nπ+);②cos(
2025-08-05 03:01
【總結】三角函數的誘導公式(二)一、填空題1.已知f(sinx)=cos3x,則f(cos10°)=________.2.若sin(3π+α)=-12,則cos??????7π2-α=________.3.已知sin??????α-π4=13,則cos??????π4+α=________.
【總結】三角函數的誘導公式(一)一、填空題1.sin585°的值為________.2.若n為整數,則代數式nπ+αnπ+α的化簡結果是________.3.若cos(π+α)=-12,32πα2π,則sin(2π+α)=________.4.化簡:-α+α-π-
【總結】三角函數第一教時教材:角的概念的推廣目的:要求學生掌握用“旋轉”定義角的概念,并進而理解“正角”“負角”“象限角”“終邊相同的角”的含義。過程:一、提出課題:“三角函數”回憶初中學過的“銳角三角函數”——它是利用直角三角形中兩邊的比值來定義的。相對于現在,我們研究的三角函數是“任意角的三角函數”,它對我們今后的學習和研究都起著十分重要的作用,并且在各門學科技術中都有
2025-04-17 12:37
【總結】高中數學三角函數復習專題一、知識點整理:1、角的概念的推廣:正負,范圍,象限角,坐標軸上的角;2、角的集合的表示:①終邊為一射線的角的集合:=②終邊為一直線的角的集合:;③兩射線介定的區(qū)域上的角的集合:④兩直線介定的區(qū)域上的角的集合:;3、任意角的三角函數:(1)弧長公式:R為圓弧的半徑,為圓心角弧度數,為弧長。(2)扇形的面積公式:
2025-04-17 12:54
【總結】專題復習三角函數一三角函數的概念一、知識要點:1、角:角可以看成平面內一條射線繞著端點從一個位置旋轉另一個位置所成的圖形。按逆時針方向旋轉所形的角叫做_____;按順時針方向旋轉所形成的角叫做_____。2、象限角:使角的頂點與原點重合,角的始邊與軸的非負半軸重合.角的終邊落在第幾象限,就說這個角是第幾象限角。象限角的集合為:第一象限角:第二象限角:第三象限角
2025-04-17 13:03
【總結】高中數學必修4知識點總結第一章三角函數2、象限角:角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標軸上的角的集合為3、終邊相等的角:與角終邊相同的角的集合為4、已知是第幾象限角,確
2025-07-22 23:52
【總結】三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2
2025-07-20 16:04
2024-12-08 20:23