【總結(jié)】第一節(jié)線性方程組的消元法第二節(jié)矩陣的初等變換第一章線性方程組的消元法和矩陣的初等變換第一節(jié)線性方程組的消元法一、線性方程組的基本概念二、消元法解線性方程組1、線性方程組的初等變換2、利用初等變換解一般線性方程組一、線性方程組的基本概念1.線性方程組的
2025-08-05 10:44
【總結(jié)】§矩陣的秩列行和中任取矩陣,在是設(shè)kkAnmA?個元素位于這些行列交叉處的2),,(knkmk??階行列式,組成的中的相對位置不變保持在kA)(.階子式的稱為kA階子式)(矩陣的定義k1階子式是一個數(shù)。注:k一、秩的概念與性質(zhì)的秩,為的子式的最高階數(shù),稱中不為矩陣AA0).(Ar記作.0規(guī)定零
2025-07-25 13:22
【總結(jié)】第六章非線性方程組的迭代解法非線性方程組的數(shù)值解法非線性方程組的Newton法非線性方程組的Newton法非線性方程組的不動點迭代法第六章非線性方程組的迭代解法第六章非線性方程組的迭代解法學習目標:第六章非線性方程組的迭代解法TnxfxfxfxF))()
2025-09-21 09:49
【總結(jié)】第三章線性方程組§1消元法一授課內(nèi)容:§1消元法二教學目的:理解和掌握線性方程組的初等變換,同解變換,會用消元法解線性方程組.三教學重難點:用消元法解線性方程組.四教學過程:所謂的一般線性方程組是指形式為(1)的方程組,其中代表個未知量,是方程的個數(shù),(,)稱為方程組的系數(shù),()稱為常數(shù)項.所謂
2025-04-17 13:05
【總結(jié)】第五章線性方程組的迭代解法消去法方程組系數(shù)矩陣的分類?低階稠密矩陣(例如,階數(shù)不超過150)(一般用直接法來求解)?大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)(一般用迭代法來求解)線性方程組的數(shù)值解法分類?直接法經(jīng)過有限步算術(shù)運算,可求得方程組精確解的方法。
2025-07-23 10:31
【總結(jié)】第六章線性方程組的迭代解法§1向量和矩陣的范數(shù)向量的范數(shù)矩陣的范數(shù)§2迭代解法與收斂性迭代解法的構(gòu)造迭代解法的收斂性條件§3常用的三種迭代解法Jacobi迭代法Gauss-Seide
2025-07-21 00:10
【總結(jié)】第3章MATLAB數(shù)據(jù)分析與多項式計算數(shù)據(jù)統(tǒng)計處理數(shù)據(jù)插值曲線擬合離散傅立葉變換多項式計算數(shù)據(jù)統(tǒng)計處理最大值和最小值MATLAB提供的求數(shù)據(jù)序列的最大值和最小值的函數(shù)分別為max和min,兩個函數(shù)的調(diào)用格式和操作過程類似。1.求向量的最大值和最小值求一個向量X的最大值的
2025-07-24 13:38
【總結(jié)】第六章線性方程組的解法§引言與預備知識§高斯消去法§高斯主元素消去法§矩陣的三角分解法§誤差分析§線性方程組的迭代解法§引言與預備知識(返回)?線性方程組的數(shù)值解法?向量和矩陣(返回)?矩陣的基本運算
2025-02-21 12:44
【總結(jié)】線代框架之線性方程組:線性方程組的矩陣式Ax??,其中1112111212222212,,nnmmmnnmaaaxbaaaxbAxaaaxb??????????????????????????????????
2025-01-06 22:11
【總結(jié)】第五章解線性方程組的直接法引言與預備知識高斯消去法高斯主元消去法矩陣三角分解法向量和矩陣的范數(shù)誤差分析引言與預備知識自然科學和工程技術(shù)中有很多問題的解決需要用到線性方程組的求解。這些線性方程組的系數(shù)矩陣大致可分為兩類。1)低階稠密矩陣2)大型稀疏矩陣
2025-07-21 17:12
【總結(jié)】非線性方程組研究畢業(yè)論文第一章緒論:可以看出是在空間的實值函數(shù)。再用向量轉(zhuǎn)換下可以得到:,x=,0=此時可以把方程換成:。()把F可以看做在區(qū)域內(nèi)展開的非線性映像,表示為:,。
2025-06-27 16:46
【總結(jié)】第五節(jié)齊次線性方程組一.齊次線性方程組()有非零解的充要條件二.齊次線性方程組解的性質(zhì)三.基礎(chǔ)解系四.解的結(jié)構(gòu)五.練習題,][Ansija??系數(shù)矩陣02211????nnxxx????1.齊次線性方程組()有非零解的充要條件或向量形式???????????
2025-08-05 10:50
【總結(jié)】一、矩陣的初等變換定義對矩陣進行下列三種變換,稱為矩陣的初等變換:(1)交換矩陣的任意兩行;(2)矩陣的任意一行乘以非零數(shù)k;(3)矩陣的任意一行乘以k加到另外一行。、、行階梯形矩陣,特點是可以畫一條階梯線,線的左下方元素全為零;行簡化階梯形矩陣,其非零行的首非零元為1,且非零元所在列的其它元素都為零。二
2025-06-07 16:29
【總結(jié)】沈陽航空航天大學理學院本科學位論文開題報告論文題目:求解稀疏線性方程組的迭代算法專業(yè):信息與計算科學學生姓名:指導教師:報告時間:2015年3月18日指導教師意見:
2025-01-21 16:54
【總結(jié)】2022/8/28華南師范大學數(shù)學科學學院謝驪玲第3章線性方程組AX=B的數(shù)值解法華南師范大學數(shù)學科學學院謝驪玲2022/8/28引言?在自然科學和工程技術(shù)中很多問題的解決常常歸結(jié)為解線性代數(shù)方程組。例如電學中的網(wǎng)絡(luò)問題,船體數(shù)學放樣中建立三次樣條函數(shù)問題,用最小二乘法求實驗數(shù)據(jù)的曲線擬合問題,解非線性方程組問
2025-08-05 11:07