【總結(jié)】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-12 08:23
【總結(jié)】6、(2011?淄博)拋物線y=ax2+bx+c與y軸交于點(diǎn)C(0,﹣2),與直線y=x交于點(diǎn)A(﹣2,﹣2),B(2,2).(1)求拋物線的解析式;(2)如圖,線段MN在線段AB上移動(dòng)(點(diǎn)M與點(diǎn)A不重合,點(diǎn)N與點(diǎn)B不重合),且MN=2,若M點(diǎn)的橫坐標(biāo)為m,過點(diǎn)M作x軸的垂線與x軸交于點(diǎn)P,過點(diǎn)N作x軸的垂線與拋物線交于點(diǎn)Q.以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能否為平行四邊形?若能,請(qǐng)
2025-08-15 11:15
【總結(jié)】初三數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、二次函數(shù)的基
2025-07-22 19:22
【總結(jié)】第1頁共14頁初三數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)總結(jié)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.
2024-11-06 06:49
【總結(jié)】第二章二次函數(shù)知識(shí)點(diǎn)1用一般式(三點(diǎn)式)確定二次函數(shù)表達(dá)式(1,0),(2,0)和(0,2)三點(diǎn)的二次函數(shù)的表達(dá)式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點(diǎn)的縱坐標(biāo)為1,且經(jīng)過點(diǎn)(2,5)和(-2,13),求這個(gè)二次函數(shù)的表達(dá)式.
2025-06-18 00:27
【總結(jié)】二次函數(shù)知識(shí)點(diǎn)(第一講)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、二次函數(shù)的基本形式1.二次
2025-06-23 13:56
【總結(jié)】范文范例學(xué)習(xí)指導(dǎo)二次函數(shù)動(dòng)點(diǎn)問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對(duì)稱軸為x=,且經(jīng)過點(diǎn)A(2,1),點(diǎn)P是拋物線上的動(dòng)點(diǎn),P的橫坐標(biāo)為m(0<m<2),過點(diǎn)P作PB⊥x軸,垂足為B,PB交OA于點(diǎn)C,點(diǎn)O關(guān)于直線PB的對(duì)稱點(diǎn)為D,連接CD,AD,過點(diǎn)A作AE⊥x軸,垂足為E.(1)求拋物線的解析式;(2)填空:①用含m
2025-08-05 01:44
【總結(jié)】....二次函數(shù)動(dòng)點(diǎn)問題典型例題等腰三角形問題1.如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx的對(duì)稱軸為x=,且經(jīng)過點(diǎn)A(2,1),點(diǎn)P是拋物線上的動(dòng)點(diǎn),P的橫坐標(biāo)為m(0<m<2),過點(diǎn)P作PB⊥x軸,垂足為B,PB交OA于點(diǎn)C,點(diǎn)O關(guān)于直線PB的對(duì)稱點(diǎn)為D,連接CD,
2025-03-24 06:24
【總結(jié)】數(shù)學(xué)壓軸題二次函數(shù)動(dòng)點(diǎn)問題,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸相交于點(diǎn)C(0,).當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連結(jié)AC、BC.(1)求實(shí)數(shù)a,b,c的值;(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長(zhǎng)度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)
【總結(jié)】第三章函數(shù)二次函數(shù)考點(diǎn)1二次函數(shù)的圖像與性質(zhì)陜西考點(diǎn)解讀中考說明:,通過圖像了解二次函數(shù)的性質(zhì)。y=a(x-h)2+k的形式,并能由此得到二次函數(shù)圖像的頂點(diǎn)坐標(biāo),說出圖像的開口方向,畫出圖像的對(duì)稱軸,并能解決簡(jiǎn)單的實(shí)際問題。陜西考點(diǎn)解讀陜西考點(diǎn)解讀陜西考點(diǎn)
2025-06-13 02:30
【總結(jié)】確定二次函數(shù)的表達(dá)式第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)習(xí)目標(biāo).(難點(diǎn)).(重點(diǎn))導(dǎo)入新課復(fù)習(xí)引入y=kx+b(k≠0)有幾個(gè)待定系數(shù)?通常需要已知幾個(gè)點(diǎn)的坐標(biāo)求出它的表達(dá)式??它的一般步驟是什么?2個(gè)2個(gè)待定系數(shù)法(1)設(shè):(表達(dá)式)
2025-06-18 00:42
【總結(jié)】3確定二次函數(shù)的表達(dá)式【基礎(chǔ)梳理】確定二次函數(shù)表達(dá)式的一般方法已知條件選用表達(dá)式的形式頂點(diǎn)和另一點(diǎn)的坐標(biāo)_______二次函數(shù)各項(xiàng)系數(shù)中的一個(gè)和兩點(diǎn)的坐標(biāo)_______三個(gè)點(diǎn)的坐標(biāo)_______頂點(diǎn)式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達(dá)式一般需要三個(gè)條件.(
2025-06-14 06:48
2025-06-19 07:25
【總結(jié)】3確定二次函數(shù)的表達(dá)式..二次函數(shù)解析式有哪幾種表達(dá)方式?一般式:y=ax2+bx+c頂點(diǎn)式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個(gè)點(diǎn)的坐標(biāo),可用待定系數(shù)法求其解析式.交點(diǎn)式:y=a(x-x1)(x-x2)解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
【總結(jié)】二次函數(shù)一、選擇題1.(20202浙江鎮(zhèn)江2模擬)已知點(diǎn)E(2,1)在二次函數(shù)mxxy???82(m為常數(shù))的圖像上,則點(diǎn)A關(guān)于圖像對(duì)稱軸的對(duì)稱點(diǎn)坐標(biāo)是()A.(4,1)B.(5,1)C.(6,1)D.(7,1)
2024-11-15 16:39