【總結(jié)】第一篇:放縮法(不等式、數(shù)列綜合應(yīng)用) “放縮法”證明不等式的基本策略 近年來在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問題和...
2024-10-29 04:33
【總結(jié)】存檔編號贛南師范學(xué)院學(xué)士學(xué)位論文放縮法在不等式證明中的應(yīng)用教學(xué)學(xué)院數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院屆別2022屆專
2025-01-06 06:15
【總結(jié)】淺談放縮法在不等式證明中的應(yīng)用 篇一:《放縮法在不等式的應(yīng)用》論文 放縮法在不等式的應(yīng)用 所謂放縮法確實(shí)是利用不等式的傳遞性,對照證標(biāo)題的進(jìn)展合情合理的放大和縮小的過程,在使用放縮法證題時要...
2025-03-26 01:26
【總結(jié)】第一篇:放縮法證明“數(shù)列+不等式”問題的兩條途徑 放縮法證明“數(shù)列+不等式”問題的兩條途徑 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年命題的熱點(diǎn),解決這類問題常常用到放縮法。用放縮法解...
2024-10-29 04:45
【總結(jié)】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實(shí)數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負(fù)號、零)。變形時常用的方法有...
2024-10-28 23:16
【總結(jié)】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【總結(jié)】第一篇:賦值法證明不等式 賦值法證明不等式的有關(guān)問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當(dāng)0 222a(b-a)...
2024-10-29 06:45
【總結(jié)】第一篇:構(gòu)造法證明不等式5 構(gòu)造法證明不等式(2) (以下的構(gòu)造方法要求過高,即使不會也可以,如果沒有時 間就不用看了) 在學(xué)習(xí)過程中,常遇到一些不等式的證明,看似簡單,但卻無從下手,多種常用...
2024-10-28 01:37
【總結(jié)】第一篇:證明數(shù)列前n項(xiàng)和不等式的定積分放縮法 證明數(shù)列前n項(xiàng)和不等式的定積分放縮法 摘要:本文深入分析數(shù)列與函數(shù)之間的聯(lián)系,結(jié)合高等數(shù)學(xué)中數(shù)項(xiàng)級數(shù)[4]的觀點(diǎn)研究高考證明數(shù)列前n項(xiàng)和不等式的相關(guān)問...
2024-11-03 22:04
【總結(jié)】第一部分:三個重要的放縮一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:二、放縮后裂項(xiàng)迭加例2.?dāng)?shù)列,,其前項(xiàng)和為求證:(1)用表示出(2)若在上恒成立,求的取值范圍(3)證明:
2025-06-16 12:41
【總結(jié)】第一篇:數(shù)學(xué)所有不等式放縮技巧及證明方法 高考數(shù)學(xué)所有不等式放縮技巧及證明方法 一、裂項(xiàng)放縮 例1.(1)求 例2.(1)求證:1+(2)求證: /7?4kk=1n22-1的值;(2)求證:...
2024-10-28 03:50
【總結(jié)】第一篇:放縮法是不等式證明中一種常用的方法 放縮法是不等式證明中一種常用的方法,也是一種非常重要的方法。在證明過程中,適當(dāng)?shù)剡M(jìn)行放縮,可以化繁為簡、化難為易,達(dá)到事半功倍的效果。但放縮的范圍較難把握...
2024-10-29 04:54
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】第一篇:構(gòu)造法證明函數(shù)不等式 構(gòu)造法證明函數(shù)不等式 1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個難點(diǎn),也是近幾年高考的熱點(diǎn). 2、解題技巧是構(gòu)造...
2024-10-27 20:30
【總結(jié)】第一篇:函數(shù)法證明不等式[大全] 函數(shù)法證明不等式 已知函數(shù)f(x)=x-sinx,數(shù)列{an}滿足0 證明0 證明an+1 3它提示是構(gòu)造一個函數(shù)然后做差求導(dǎo),確定單調(diào)性。可是還是一點(diǎn)思路...
2024-10-30 22:00