freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

不等式證明之放縮法[5篇范文]-文庫吧

2024-10-28 23:26 本頁面


【正文】 知識的掌握程度,而且是衡量學(xué)生數(shù)學(xué)水平的一個重要標(biāo)志,本文將著重介紹以下幾種不等式的初等證明方法和部分方法的例題以便理解。一、不等式的初等證明方法:由因?qū)Ч#簣?zhí)果索因。基本步驟:要證..只需證..,只需證..(1)“分析法”證題的理論依據(jù):尋找結(jié)論成立的充分條件或者是充要條件。(2)“分析法”證題是一個非常好的方法,但是書寫不是太方便,所以我們可利用分析法尋找證題的途徑,然后用“綜合法”進(jìn)行表達(dá)。:正難則反。:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。放縮法的方法有:(1)添加或舍去一些項(xiàng),如(2)利用基本不等式,如:(3)將分子或分母放大(或縮小)::換元的目的就是減少不等式中變量,以使問題化難為易、化繁為簡,常用的換元有三角換元和代數(shù)換元。二、部分方法的例題換元法是數(shù)學(xué)中應(yīng)用最廣泛的解題方法之一。有些不等式通過變量替換可以改變問題的結(jié)構(gòu),便于進(jìn)行比較、分析,從而起到化難為易、化繁為簡、化隱蔽為外顯的積極效果。欲證A≥B,可將B適當(dāng)放大,即B1≥B,只需證明A≥B1。相反,將A適當(dāng)縮小,即A≥A1,只需證明A1≥B即可。注意:用放縮法證明數(shù)列不等式,關(guān)鍵是要把握一個度,如果放得過大或縮得過小,就會導(dǎo)致解決失敗。放縮方法靈活多樣,要能想到一個恰到好處進(jìn)行放縮的不等式,需要積累一定的不等式知識,同時要求我們具有相當(dāng)?shù)臄?shù)學(xué)思維能力和一定的解題智慧。數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識,掌握了必要的數(shù)學(xué)思想和方法,就能順利地應(yīng)對那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵是你有沒有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒有掌握正確的數(shù)學(xué)解題方法。當(dāng)然,題目做得多也有若干好處:一是“熟能生巧”,加快速度,節(jié)省時間,這一點(diǎn)在考試時間有限時顯得很重要。二是利用做題來鞏固、記憶所學(xué)的定義、定理、法則、公式,形成良性循環(huán)。解題需要豐富的知識,更需要自信心。沒有自信就會畏難,就會放棄。有了自信,才能勇往直前,才不會輕言放棄,才會加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來屬于自己的春天。第四篇:放縮法證明不等式主備人:審核:包科領(lǐng)導(dǎo):年級組長:使用時間:放縮法證明不等式【教學(xué)目標(biāo)】;理解用放縮法證明不等式的方法和步驟?!局攸c(diǎn)、難點(diǎn)】重點(diǎn):放縮法證明不等式。難點(diǎn):放縮法證明不等式?!緦W(xué)法指導(dǎo)】,自學(xué)課本內(nèi)容,限時獨(dú)立完成導(dǎo)學(xué)案;,提交小組討論;—p19,【自主探究】1,放縮法:證明命題時,有時可以通過縮?。ɑ颍┓质降姆帜福ɑ颍?,或通過放大(或縮?。┍粶p式(或)來證明不等式,這種證明不等式的方法稱為放縮法。2,放縮時常使用的方法:①舍去或加上一些項(xiàng),即多項(xiàng)式加上一些正的值,多項(xiàng)式的值變大,或多項(xiàng)式減上一些正的值,多項(xiàng)式的值變小。如t2+2t2,t22t2等。②將分子或分母放大(或縮?。悍帜缸兇?,分式值減小,分母變小,分式值增大。如當(dāng)(k206。N,k1)1111,22kkk(k1)k(k+1),③利用平均值不等式,④利用函數(shù)單調(diào)性放縮。【合作探究】證明下列不等式(1)(2),已知a0,用放縮法證明不等式:loga(a1)1111++...+2(n206。N+)2222123nloga(a+1)1(3)已知x>0, y0,z0求證x+y+z(4)已知n206。N+,求證:1【鞏固提高】已知a,b,c,d都是正數(shù),s=【能力提升】求證: +...abcd+++求證:11+a+b163。a1+a+b1+b本節(jié)小結(jié):第五篇:放縮法證明數(shù)列不等式放縮法證明數(shù)列不等式基礎(chǔ)知識回顧:放縮的技巧與方法:(1)常見的數(shù)列求和方法和通項(xiàng)公式特點(diǎn):① 等差數(shù)列求和公式:錯誤!未找到引用源。,錯誤!未找到引用源。(關(guān)于錯誤!未找到引用源。的一次函數(shù)或常值函數(shù))② 等比數(shù)列求和公式:錯誤!未找到引用源。,錯誤!未找到引用源。(關(guān)于錯誤!未找到引用源。的指數(shù)類函數(shù))③ 錯位相減:通項(xiàng)公式為“等差錯誤!未找到引用源。等比”的形式④ 裂項(xiàng)相消:通項(xiàng)公式可拆成兩個相鄰項(xiàng)的差,且原數(shù)列的每一項(xiàng)裂項(xiàng)之后正負(fù)能夠相消,進(jìn)而在求和后式子中僅剩有限項(xiàng)(2)與求和相關(guān)的不等式的放縮技巧:① 在數(shù)列中,“求和看通項(xiàng)”,所以在放縮的過程中通常從數(shù)列的通項(xiàng)公式入手② 在放縮時要看好所證不等式中不等號的方向,這將決定對通項(xiàng)公式是放大還是縮?。☉?yīng)與所證的不等號同方向)③ 在放縮時,對通項(xiàng)公式的變形要向可求和數(shù)列的通項(xiàng)公式靠攏,常見的是向等比數(shù)列與可裂項(xiàng)相消的數(shù)列進(jìn)行靠攏。④ 若放縮后求和發(fā)現(xiàn)放“過”了,即與所證矛盾,通常有兩條道路選擇:第一個方法是微調(diào):看能否讓數(shù)列中的一些項(xiàng)不動,其余項(xiàng)放縮。從而減小放縮的程度,使之符合所證不等式;第二個方法就是推翻了原有放縮,重新進(jìn)行設(shè)計(jì),選擇放縮程度更小的方式再進(jìn)行嘗試。(3)放縮構(gòu)造裂項(xiàng)相消數(shù)列與等比數(shù)列的技巧:① 裂項(xiàng)相消:在放縮時,所構(gòu)造的通項(xiàng)公式要具備“依項(xiàng)同構(gòu)”的特點(diǎn),即作差的兩項(xiàng)可視為同一數(shù)列的相鄰兩項(xiàng)(或等距離間隔項(xiàng))② 等比數(shù)列:所面對的問題通常為“錯誤!未找到引用源。常數(shù)”的形式,所構(gòu)造的等比數(shù)列的公比也要滿足錯誤!未找到引用源。,如果題目條件無法體現(xiàn)出放縮的目標(biāo),則可從所證不等式的常數(shù)入手,常數(shù)可視為錯誤!未找到引用源。的形式,然后猜想構(gòu)造出等比數(shù)列的首項(xiàng)與公比,進(jìn)而得出等比數(shù)列的通項(xiàng)公式,再與原通項(xiàng)公式進(jìn)行比較,看不等號的方向是否符合條件即可。例如常數(shù)錯誤!未找到引用源。,即可猜想該等比數(shù)列的首項(xiàng)為錯誤!未找到引用源。,公比為錯誤!未找到引用源。,即通項(xiàng)公式為錯誤!未找到引用源。注:此方法會存在風(fēng)險,所猜出的等比數(shù)列未必能達(dá)到放縮效果,所以是否選擇利用等比數(shù)列進(jìn)行放縮,受數(shù)列通項(xiàng)公式的結(jié)構(gòu)影響(4)與數(shù)列中的項(xiàng)相關(guān)的不等式問題:① 此類問題往往從遞推公式入手,若需要放縮也是考慮對遞推公式進(jìn)行變形② 在有些關(guān)于項(xiàng)的不等式證明中,可向求和問題進(jìn)行劃歸,即將遞推公式放縮變形成為可“累加”或“累乘”的形式,即錯誤!未找到引用源?;蝈e誤!未找到引用源。(累乘時要求不等式兩側(cè)均為正數(shù)),然后通過“累加”或“累乘”達(dá)到一側(cè)為錯誤!未找到引用源。,另一側(cè)為求和的結(jié)果,進(jìn)而完成證明 應(yīng)用舉例:類型一:與前n項(xiàng)和相關(guān)的不等式 例1.【2017屆江蘇泰州中學(xué)高三摸底考試】已知數(shù)列錯誤!未找到引用源。的前錯誤!未找到引用源。項(xiàng)和錯誤!未找到引用源。滿足:錯誤!未找到引用源。(錯誤!未找到引用源。為常數(shù),且錯誤!未找到引用源。,錯誤!未找到引用源。).(1)求錯誤!未找到引用源。的通項(xiàng)公式;(2)設(shè)錯誤!未找到引用源。,若數(shù)列錯誤!未找到引用源。為等比數(shù)列,求錯誤!未找到引用源。的值;(3)在滿足條件(2)的情形下,設(shè)錯誤!未找到引用源。,數(shù)列錯誤!未找到引用源。的前錯誤!未找到引用源。項(xiàng)和為錯誤!未找到引用源。,若不等式錯誤!未找到引用源。對任意的錯誤!未找到引用源。恒成立,求實(shí)數(shù)錯誤!未找到引用源。的取值范圍.!未找到引用源。.對數(shù)列錯誤!未找到引用源。和錯誤!未找到引用源。的子集錯誤!未找到引用源。,若錯誤!未找到引用源。,定義錯誤!未找到引用源。;若錯誤!未找到引用源。,定義錯誤!未找到引用源。.例如:錯誤!未找到引用源。時,錯誤!未找到引用源。.現(xiàn)設(shè)錯誤!未找到引用源。是公比為3的等比數(shù)列,且當(dāng)錯誤!未找到引用源。時,錯誤!未找到引用源。.錯誤!未找到引用源。(1)求數(shù)列的通項(xiàng)公式;錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。(2)對任意正整數(shù),若,求證:;錯誤!未找到引用源。錯誤!未找到引用源。(3)設(shè),求證:.類型二、與通項(xiàng)運(yùn)算相關(guān)的不等式 !未找到引用源。,數(shù)列錯誤!未找到引用源。滿足:錯誤!未找到引用源。.(1)求證:錯誤!未找到引用源。時,錯誤!未找到引用源。;(2)求證:錯誤!未找到引用源。(錯誤!未找到引用源。);(3)求證:錯誤!未找到引用源。(錯誤!未找到引用源。).!未找到引用源。是數(shù)列錯誤!未找到引用源。的前錯誤!未找到引用源。項(xiàng)和,且對任意錯誤!未找到引用源。,有錯誤!未找到引用源。.其中錯誤!未找到引用源。為實(shí)數(shù),且錯誤!未找到引用源。.(1)當(dāng)錯誤!未找到引用源。時,①求數(shù)列錯誤!未找到引用源。的通項(xiàng);②是否存在這樣的正整數(shù)錯誤!未找到引用源。,使得錯誤!未找到引用源。成等比數(shù)列?若存在,給出錯誤!未找到引用源。滿足的條件,否則,請說明理由.(2)當(dāng)錯誤!未找到引用源。時,設(shè)錯誤!未找到引用源。,① 判定
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1