【總結(jié)】2.4向量的數(shù)量積前面我們學(xué)習(xí)過向量的加減法,實數(shù)與向量的乘法,知道a+b,a-b,λa(λ∈R)仍是向量,大家自然要問:兩個向量是否可以相乘?相乘后的結(jié)果是什么?是向量還是數(shù)?1.已知兩個非零向量a與b,它們的夾角為θ,我們把數(shù)量________叫做a與b的數(shù)量積,記作__________
2024-12-05 10:15
【總結(jié)】2.向量的數(shù)乘情景:我們已經(jīng)學(xué)習(xí)了向量的加法,請同學(xué)們作出a+a+a和(-a)+(-a)+(-a)(與已知向量a相比).思考:相加后和的長度與方向有什么變化?這些變化與哪些因素有關(guān)?1.實數(shù)λ與向量a的積是一個向量,記作________.答案:λa2.|λa|=________.
【總結(jié)】第1講平面向量的概念與運算新疆王新敞特級教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)·必修章節(jié)復(fù)習(xí)特級教師王新敞源頭學(xué)子2()C行的向量0新疆王新敞特級教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)
2025-06-13 12:24
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)平面向量線性運算的坐標表示課后訓(xùn)練北師大版必修4"1.已知a=(1,1),b=(1,-1),則向量1322?ab等于().A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)2.若AB
2024-12-03 03:14
【總結(jié)】 《平面向量正交分解及坐標表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標】 (1)理解平面向量的坐標的概念; (2)掌握平面向量的坐標運算; (3)會根據(jù)向量的坐標,判斷向量是否共線. 【重點難點】 教學(xué)重點...
2025-04-03 01:19
【總結(jié)】課題:平面向量復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標】通過本章的復(fù)習(xí),對知識進行一次梳理,突出知識間的內(nèi)在聯(lián)系,提高綜合運用向量知識解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【總結(jié)】向量的坐標表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)平面向量基本定理課后訓(xùn)練北師大版必修4"1.已知向量a=e1-2e2,b=2e1+e2.其中e1,e2不共線,則a+b與c=6e1-2e2的關(guān)系是().A.不共線B.共線C.相等D.無法確定2.設(shè)
【總結(jié)】第2章平面向量2.1向量的概念及表示情景:如圖,一只老鼠從A處以30km/h的速度向西北方向逃竄,如果貓由B處向正東方向以40km/h的速度追.思考:貓能捉到老鼠嗎?為什么?1.我們把既有________又有________的量叫做向量.如:力、位移、速度、加速度等.答案:大小方向
2024-12-05 10:16
【總結(jié)】專題八平面向量一、復(fù)習(xí)要求一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來表示,注意不能說向量就是有向線段,為什么?(向量可以平移)。如:2.零向量:長度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長度為一個單位長度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長度相等且方向相同的
2025-04-17 12:54
【總結(jié)】【金版學(xué)案】2021-2021學(xué)年高中數(shù)學(xué)第2章平面向量本章知識整合蘇教版必修4網(wǎng)絡(luò)構(gòu)建平面向量的線性運算e1,e2是不共線的向量,已知向量AB→=2e1+ke2,CB→=e1+3e2,CD→=2e1-e2,若A、B、D三點共線,求k的值.分析:因為A、B、D三點共線
2024-12-05 03:23
【總結(jié)】課題:平面向量的數(shù)量積(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標】1、掌握平面向量數(shù)量積的坐標表示;2、掌握向量垂直的坐標表示的等價條件?!菊n前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2024-12-05 00:28
【總結(jié)】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【總結(jié)】課題:平面向量基本定理班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標】1、了解平面向量基本定理;2、掌握平面向量基本定理及其應(yīng)用。【課前預(yù)習(xí)】1、共線向量基本定理一般地,對于兩個向量??baa,0?,如果有一個實數(shù)?,使_______
2024-11-19 21:43
【總結(jié)】高中數(shù)學(xué)必修4知識點總結(jié)平面向量知識點歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大小.②零向量:長度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0
2025-04-04 05:10