【總結(jié)】雙曲線的標(biāo)準(zhǔn)方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能1.了解雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)過程,能根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.2.掌握雙曲線兩種標(biāo)準(zhǔn)方程的形式過程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線
2024-12-05 09:30
【總結(jié)】課題:空間向量的運(yùn)算(二)學(xué)習(xí)目標(biāo):知識(shí)與技能:1、熟練掌握空間向量的數(shù)量積運(yùn)算.2、能用空間向量的運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題過程與方法:經(jīng)歷向量運(yùn)算平面到空間推廣的過程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價(jià)值觀:學(xué)會(huì)用發(fā)展的眼光看問題,認(rèn)識(shí)事物是在不斷發(fā)展變化的,會(huì)用聯(lián)系的觀點(diǎn)看待問題。
2024-11-18 18:59
【總結(jié)】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【總結(jié)】課題空間向量的運(yùn)算(一)學(xué)習(xí)目標(biāo):知識(shí)與技能:1、熟練掌握空間向量的加法、減法、數(shù)乘及其數(shù)量積運(yùn)算.2、能用空間向量的運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.過程與方法:經(jīng)歷向量運(yùn)算平面到空間推廣的過程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價(jià)值觀:學(xué)會(huì)用發(fā)展的眼光看問題,認(rèn)識(shí)事物是在不斷發(fā)展變化的,會(huì)用聯(lián)系的觀點(diǎn)看
2024-12-03 00:16
【總結(jié)】課題:平面向量的數(shù)量積(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價(jià)條件?!菊n前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2024-12-05 00:28
【總結(jié)】課題:空間向量基本定理學(xué)習(xí)目標(biāo):知識(shí)與技能:掌握空間向量基底的概念;了解空間向量的基本定理及其推論;了解空間向量基本定理的證明。過程與方法:培養(yǎng)學(xué)生類比、聯(lián)想、維數(shù)轉(zhuǎn)換的思想方法和空間想象能力。情感態(tài)度與價(jià)值觀:創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從生活中的常見現(xiàn)象引入課題,引起學(xué)生極大的學(xué)習(xí)興趣,加強(qiáng)數(shù)學(xué)與生活實(shí)踐的聯(lián)系。學(xué)
【總結(jié)】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2024-11-19 22:43
【總結(jié)】§3.空間向量的數(shù)乘運(yùn)算知識(shí)點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡(jiǎn)12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對(duì)角線BC′上的34分點(diǎn),設(shè)'MNABADAA???
2024-12-08 01:49
【總結(jié)】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
【總結(jié)】平面向量的數(shù)量積學(xué)習(xí)目標(biāo):、夾角平面向量的數(shù)量積的定義已知兩個(gè)非零向量a和b,它們的夾角為?,我們把數(shù)量叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即?cos||||ba?c
2024-11-18 08:49
【總結(jié)】平面向量的數(shù)量積學(xué)法指導(dǎo)????向量的數(shù)量積?已知兩個(gè)非零向量與,它們的?夾角為θ,我們把數(shù)量叫做與的數(shù)量積(或內(nèi)積,點(diǎn)乘),ab|||cos|ab?ab||||cosaba
2024-11-17 23:32
【總結(jié)】1空間向量運(yùn)算的坐標(biāo)表示北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結(jié)】學(xué)法指導(dǎo)????向量的數(shù)量積?已知兩個(gè)非零向量與,它們的?夾角為θ,我們把數(shù)量叫做與的數(shù)量積(或內(nèi)積,點(diǎn)乘),ab|||cos|ab?ab||||cosabab???思考:向量的數(shù)量積
【總結(jié)】直線的方向向量與平面的法向量一、學(xué)習(xí)目標(biāo)1.理解直線的方向向量和平面的法向量;2.會(huì)用待定系數(shù)法求平面的法向量。教學(xué)重點(diǎn):直線的方向向量和平面的法向量教學(xué)難點(diǎn):求平面的法向量二、課前自學(xué)平面坐標(biāo)系中用直線的傾斜角、斜率來刻畫直線平行與垂直的位置關(guān)系。如何用向量來描述空間的兩條直線、直線
2024-11-20 00:29