【總結(jié)】三角形的內(nèi)切圓教學目的:1.使學生掌握三角形的內(nèi)切圓的作法.2.使學生掌握三角形內(nèi)心的定義和性質(zhì).教學的重點和難點:三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應用即是重點,又是難點.教學過程:一、復習與提問(學生回答)角的平分線的性質(zhì)定理和判定定理二、講授新課1.
2024-12-07 23:37
【總結(jié)】 《三角形的內(nèi)切圓》同步提升練習 一、選擇題 1.下列命題正確的是() A.三角形的內(nèi)心到三角形三個頂點的距離相等 B.三角形的內(nèi)心不一定在三角形的內(nèi)部 C.等邊三角形的內(nèi)心,外心重合 ...
2024-12-07 00:49
【總結(jié)】三角形的內(nèi)切圓同步練習◆基礎訓練1.如圖1,⊙O內(nèi)切于△ABC,切點為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于()A.40°B.55°C.65°D.70°
2024-11-15 19:40
【總結(jié)】三角形的內(nèi)切圓湘教版九年級下冊1、確定圓的條件是什么?(1).圓心與半徑2、敘述角平線的性質(zhì)定理與判定定理。性質(zhì):角平線上的點到這個角的兩邊的距離相等。判定:到這個角的兩邊距離相等的點在這個角的平分線上。(2).不在同一直線上的三點(1)△ABC是圓O的內(nèi)接三角形;(2)圓O是△ABC的外接圓(3)圓
2025-07-25 14:49
【總結(jié)】三角形的內(nèi)切圓學前溫故1.經(jīng)過三角形三個頂點的圓叫做三角形的外接圓.外接圓的圓心叫做三角形的外心.這個三角形叫做圓的內(nèi)接三角形.2.三角形的外心到三角形的三個頂點距離相等.新課早知1.與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心.這個三角形叫做圓的外切三角形.2.三角
2024-11-18 16:05
2024-12-09 07:19
【總結(jié)】三角形的內(nèi)切圓展示課3種位置關系::(1)切線的判定(判定定理).經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.(2)切線的性質(zhì)(定理):圓的切線垂直于過切點的半徑.(3)切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角.3.主要輔助線:作過切點的半徑
2025-04-30 18:20
【總結(jié)】魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白鐵皮上裁下一個圓,做成一個水桶的底,問怎樣裁這個圓面積最大?ABC魯能師傅想在一塊三角形的白
2024-11-27 23:38
【總結(jié)】初中數(shù)學資源網(wǎng)切線長與三角形的內(nèi)切圓初中數(shù)學資源網(wǎng)?⊙O上有一點A,你能過點A點作出⊙O的切線嗎?畫一畫●O●A?⊙O外有一點P,你還能過點P作出⊙O的切線嗎?●O●P初中數(shù)學資源網(wǎng)。PA
2024-10-19 11:57
【總結(jié)】 《三角形的內(nèi)切圓》教學設計 教學目的: 1.使學生掌握三角形的內(nèi)切圓的作法. 2.使學生掌握三角形內(nèi)心的定義和性質(zhì). 教學的重點和難點: 三角形的內(nèi)切圓的作法和三角形的內(nèi)心的應用即...
2025-04-03 04:40
【總結(jié)】一、復習提問:敘述角平分線的性質(zhì)定理和判定定理在角平分線上的點到這個角的兩邊的距離相等到一個角的兩邊的距離相等的點,在這個角的平分線上提出問題:從一塊三角形的材料上截下一塊圓形的用料,怎樣才能使圓的面積盡可能最大呢?作圓,使它和已知三角形的各邊都相切已知:△ABC求作:和△A
2024-11-30 06:43
【總結(jié)】三角形的內(nèi)切圓(一)提出問題如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?ABC例1作圓,使它和已知三角形的各邊都相切.ABCIMND(1)作圓的關鍵是什么?提出以下幾個問題進行討論:(2)假設⊙I是所求作的圓,
2024-12-07 13:04
【總結(jié)】三角形的內(nèi)切圓高臺縣二中張維忠如圖是一塊三角形木料,木工師傅要從中裁下一塊圓形用料,怎樣才能使裁下的圓的面積盡可能大呢?ABC三角形的內(nèi)切圓ABC和三角形各邊都相切的圓叫三角形的內(nèi)切圓三角形叫圓的外切三角形問題1:作圓的關鍵是什么?問
2024-11-07 02:32
【總結(jié)】例:如圖為△ABC的內(nèi)切圓,點D,E分別為邊AB,AC上的點,且DE為⊙I的切線,若△ABC的周長為21,BC邊的長為6,則△ADE的周長為( B?。.15B.9C.D.7如圖,在△ABC中,AB=10,AC=6,BC=8,⊙O為△ABC的內(nèi)切圓,點D是斜邊AB的中點,則tan∠ODA= 2 .如圖,O是△ABC的內(nèi)心,過點O作
2025-07-25 00:01
【總結(jié)】 九年級下冊《三角形的內(nèi)切圓》說課稿 一、教材分析 1、教材的地位與作用 本節(jié)課是在學生已經(jīng)學習了切線的判定與性質(zhì)的基礎上,通過求作三角形內(nèi)最大圓的問題引出三角形的內(nèi)切圓的概念。學生通...
2025-04-03 05:12