【總結(jié)】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”);若,則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)若,則(當(dāng)且僅當(dāng)時(shí)取“=”),則(當(dāng)且僅當(dāng)時(shí)取“=”)
2025-03-25 00:14
【總結(jié)】第一篇:基本不等式的證明教案 課題:基本不等式的證明(1) 斜橋中學(xué)肖劍 一、教材分析 不等式是高中的重點(diǎn)也是難點(diǎn),而本節(jié)內(nèi)容又是該章的重中之重,是《考試說(shuō)明》中八個(gè)C級(jí)考點(diǎn)之一?;静坏仁降?..
2025-10-18 19:03
【總結(jié)】第一篇:專(zhuān)題:基本不等式評(píng)課材料 《專(zhuān)題:基本不等式》一課的點(diǎn)評(píng)樺川縣第一中學(xué):李春林 在剛剛落幕的“百花獎(jiǎng)”教學(xué)競(jìng)賽中,孫忠保老師的《基本不等式》一課,給我留下了深刻的印象,現(xiàn)就本課加以點(diǎn)評(píng): ...
2025-10-15 10:17
【總結(jié)】第一篇:《基本不等式》教案 《基本不等式》教學(xué)設(shè)計(jì) 教材:人教版高中數(shù)學(xué)必修5第三章 一、教學(xué)目標(biāo) 1.通過(guò)兩個(gè)探究實(shí)例,引導(dǎo)學(xué)生從幾何圖形中獲得兩個(gè)基本不等式,了解基本不等式的幾何背景,體會(huì)...
2025-10-19 23:20
【總結(jié)】教學(xué)基本信息課題必修5第三章第四節(jié)《基本不等式》第一課時(shí)作者及工作單位 劉明石家莊實(shí)驗(yàn)中學(xué)指導(dǎo)思想與理論依據(jù)???將自己在本節(jié)課教學(xué)中的亮點(diǎn)設(shè)計(jì)所依據(jù)的指導(dǎo)思想或者核心教育教學(xué)理論簡(jiǎn)述即可,指導(dǎo)思想和依據(jù)的教育理論應(yīng)該在后面的教學(xué)過(guò)程中明確體現(xiàn)出來(lái)。本部分內(nèi)容必須和實(shí)際的教學(xué)內(nèi)容緊密聯(lián)系,
2025-06-07 19:02
【總結(jié)】邊城高級(jí)中學(xué)張秀洲1、了解兩個(gè)正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實(shí)際的應(yīng)用問(wèn)題.自學(xué)教材P5—P8解決下列問(wèn)題二、掌握用基本不等式求一些函數(shù)的最值及實(shí)際的應(yīng)用問(wèn)題.三、《教材》習(xí)題第5、6、7、8、9、10、11題.
2025-07-24 03:13
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計(jì) 《基本不等式》教學(xué)設(shè)計(jì) 開(kāi)江中學(xué)魏江蘭 目標(biāo)分析 依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo): 1、知識(shí)與能力目標(biāo):理解掌握...
2025-10-15 16:35
【總結(jié)】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))和a3+b3+c3≥3abc(a、b、c∈R+,...
2025-10-18 20:07
【總結(jié)】一、設(shè)疑引入等關(guān)系嗎?找出一些相等關(guān)系或不能在這個(gè)圖中數(shù)學(xué)家大會(huì)的會(huì)標(biāo),你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時(shí),等號(hào)成立當(dāng)且僅當(dāng)我們有一般地,對(duì)于任意實(shí)數(shù)二、新知探究稱(chēng)之為基本不等式通常寫(xiě)作則若特別地,22,0,0,.2baababb
2025-08-05 05:43
【總結(jié)】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2025-08-05 04:40
【總結(jié)】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問(wèn)題1】把一個(gè)物體放在天平的一個(gè)盤(pán)子上,在另一個(gè)盤(pán)子上放砝碼使天平平衡,稱(chēng)得物體的質(zhì)量為,天平的兩臂長(zhǎng)略有不同(其它因素不計(jì)),那么并非實(shí)際質(zhì)量.不過(guò),我們可作第二次測(cè)量:把物體調(diào)換到天平的另一盤(pán)上,此時(shí)稱(chēng)得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53
【總結(jié)】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時(shí)也成立(當(dāng)a、b∈R成立嗎?)
2025-10-25 19:19
【總結(jié)】基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,b0a=b三、常用的幾個(gè)重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38
【總結(jié)】基本不等式第2課時(shí)高一數(shù)學(xué)必修5第三章《不等式》利用求最值的要點(diǎn):,,2abababR????(1)最值存在的條件的:一正,二定
2025-08-16 01:28
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計(jì) 基本不等式 一、教學(xué)設(shè)計(jì)理念: 注重學(xué)生自主、合作、探究學(xué)習(xí),、教學(xué)設(shè)計(jì)思路: 這節(jié)課的目標(biāo)定位分為三個(gè)層面: 第一層面:知識(shí)與技能層面,①了解兩個(gè)正數(shù)的算術(shù)平均...
2025-11-05 13:44