【總結(jié)】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:);()
2025-11-09 12:09
【總結(jié)】函數(shù)的極值與導(dǎo)數(shù)aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0,那么函數(shù)y=f(x)在為這個區(qū)間內(nèi)的增函數(shù);如果在這個區(qū)
2025-11-09 12:08
【總結(jié)】2020/12/25§(一)2020/12/25復(fù)習(xí)思考?、標(biāo)準(zhǔn)方程是什么??平面上到兩個定點(diǎn)的距離的和(2a)等于定長(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2c)。)0(12222????bab
【總結(jié)】瀘州實(shí)驗(yàn)中學(xué)明楊1.導(dǎo)數(shù)的幾何意義(1)切線:如圖,當(dāng)點(diǎn)Pn(xn,f(xn))(n=1,2,3,4,…)沿著曲線f(x)趨近于點(diǎn)P(x0,f(x0))時,割線PPn趨近于確定的位置,這個確定位置的直線PT稱為點(diǎn)P處的.顯然割線P
2025-07-18 22:34
【總結(jié)】復(fù)數(shù)的幾何意義課時目標(biāo)、向量的對應(yīng)關(guān)系.復(fù)數(shù)加減法的幾何意義及應(yīng)用..1.復(fù)平面的定義建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做________,y軸叫做________,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除________外,虛軸上的點(diǎn)都表示純虛數(shù).2.復(fù)數(shù)與點(diǎn)、向量間的對應(yīng)在復(fù)平面內(nèi),復(fù)數(shù)z=a+b
2024-12-05 09:31
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第1章第3課時導(dǎo)數(shù)的幾何意義課時作業(yè)新人教B版選修2-2一、選擇題1.設(shè)f′(x0)=0,則曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線()A.不存在B.與x軸平行或重合C.與x軸垂直D.與x軸斜交[答案]B[解
2024-12-03 11:28
【總結(jié)】變化率與導(dǎo)數(shù)第三章§2導(dǎo)數(shù)的概念及其幾何意義第三章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),了解導(dǎo)函數(shù)的概念,通過函數(shù)圖像直觀地理解導(dǎo)數(shù)的幾何意義.2.會求導(dǎo)函數(shù),能根據(jù)導(dǎo)數(shù)的幾何意義求曲線上某點(diǎn)處的切線方程.導(dǎo)數(shù)的概念函數(shù)y=f
2025-11-07 23:24
【總結(jié)】復(fù)數(shù)與平行四邊形家族菱形、矩形、正方形等特殊的平面幾何圖形與某些復(fù)數(shù)式之間存在某種聯(lián)系及相互轉(zhuǎn)化的途徑.在求解復(fù)數(shù)問題時,若能善于觀察條件中給定的或者是通過推理所得的復(fù)數(shù)形式的結(jié)構(gòu)特征,往往能獲得簡捷明快的解決方法.下面列舉幾例,以供參考.一、復(fù)數(shù)式與矩形的轉(zhuǎn)化例1已知復(fù)數(shù)12zz,滿足171z??,271z??,且1
2024-11-20 00:26
【總結(jié)】函數(shù)的單調(diào)性與導(dǎo)數(shù)(4).對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos
【總結(jié)】變化率問題微積分主要與四類問題的處理相關(guān):?一、已知物體運(yùn)動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;?二、求曲線的切線;?三、求已知函數(shù)的最大值與最小值;?四、求長度、面積、體積和重心等。導(dǎo)數(shù)是微積分的核心概念之一它是研究函數(shù)增減、變化快慢、最大(?。┲档葐栴}最一般、最有效的工具。問題1氣
2025-11-08 12:02
【總結(jié)】實(shí)數(shù)集的一些性質(zhì)和特點(diǎn):(1)實(shí)數(shù)可以判定相等或不相等;(2)不相等的實(shí)數(shù)可以比較大小;(3)實(shí)數(shù)可以用數(shù)軸上的點(diǎn)表示;(4)實(shí)數(shù)可以進(jìn)行四則運(yùn)算;(5)負(fù)實(shí)數(shù)不能進(jìn)行開偶次方根運(yùn)算;……(1)實(shí)數(shù)集原有的有關(guān)性質(zhì)和特點(diǎn)能否推廣到復(fù)數(shù)集?(2)從復(fù)數(shù)的特點(diǎn)出發(fā),尋找復(fù)數(shù)集新的(實(shí)數(shù)集
2025-11-08 17:10
【總結(jié)】雙基達(dá)標(biāo)?限時20分鐘?1.函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)f′(x0)的幾何意義是().A.在點(diǎn)x0處的斜率B.在點(diǎn)(x0,f(x0))處切線與x軸所夾銳角的正切值C.曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率D.點(diǎn)(x0,f(x0))與點(diǎn)(0,0)連線的斜率解析由導(dǎo)
2024-12-03 00:14
【總結(jié)】2020/12/242020/12/24???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號有什么變化地相應(yīng)特點(diǎn)此點(diǎn)附近的圖象有什么是多少呢在此點(diǎn)的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺跳水運(yùn)動員時我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'?
2025-11-08 05:49
【總結(jié)】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點(diǎn)的切線的斜率的精確描述與求值;物理學(xué)中,物體運(yùn)動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達(dá)式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實(shí)踐,又服務(wù)于實(shí)踐.:(1)()
2025-11-09 12:15
【總結(jié)】導(dǎo)數(shù)的概念及其幾何意義教學(xué)目標(biāo):1.導(dǎo)數(shù)的概念及幾何意義;2.求導(dǎo)的基本方法;3.導(dǎo)數(shù)的應(yīng)用.教學(xué)重點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用;教學(xué)難點(diǎn):導(dǎo)數(shù)的綜合應(yīng)用.一.知識梳理1.導(dǎo)數(shù)的概念及幾何意義.2.求導(dǎo)的基本方法①定義法:??xf?=????xxfxxfxyx????????
2024-11-19 23:16