【總結】導數(shù)的幾何意義自學導引1.導數(shù)的幾何意義(1)割線斜率與切線斜率設函數(shù)y=f(x)的圖象如圖所示,AB是過點A(x0,f(x0))與點B(x0+Δx,f(x0+Δx))的一條割線,此割線的斜率是ΔyΔx=f?x0+Δx
2025-07-26 02:55
【總結】回顧①平均變化率?fx121)()??fxxx2f(x函數(shù)y=f(x)的定義域為D,∈D,f(x)從x1到x2平均變化率為:②割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y
2025-10-10 16:25
【總結】導數(shù)的幾何意義回顧①平均變化率函數(shù)y=f(x)從x1到x2平均變化率為:②平均變化率的幾何意義:割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y121)()??
2025-07-26 05:14
【總結】【課標要求】1.了解導數(shù)的概念;理解導數(shù)的幾何意義.2.會求導數(shù).3.根據(jù)導數(shù)的幾何意義,會求曲線上某點處的切線方程.【核心掃描】1.利用導數(shù)的幾何意義求曲線在某點處的切線方程.(重點)2.準確理解在某點處與過某點的切線方程.(易混點)自學導引1.切線:如圖,當點
2025-07-21 21:55
【總結】選修1-2導數(shù)的幾何意義一、選擇題1.曲線y=x2在x=0處的()A.切線斜率為1B.切線方程為y=2xC.沒有切線D.切線方程為y=0[答案]D[解析]k=y(tǒng)′=limΔx→0(0+Δx)2-02Δx=limΔx→0Δx=0,所以k=0,又y=x
2025-11-15 22:43
【總結】§知識回顧平均變化率函數(shù)y=f(x)的定義域為D,∈D,f(x)從x1到x2平均變化率為:1212)()(xxxfxfxy?????瞬時變化率當趨于0時,平均變化率就趨于函數(shù)在點的瞬時變化率,瞬時變化率刻畫的是函數(shù)在一點處變化的快慢x?0x平均變化率刻
2025-09-20 19:15
【總結】幾何意義1高二數(shù)學選修1-1第三章導數(shù)及其應用??????xxfxxflimxylimxf0x0x0?????????00-+==即:????000xxyfxxxfxy??=函數(shù)=在=處的導數(shù),記作:或???
2025-07-25 18:39
【總結】復數(shù)的幾何意義【教學目標】理解復數(shù)與從原點出發(fā)的向量的對應關系,掌握復數(shù)的向量表示,復數(shù)模的概念及求法,復數(shù)模的幾何意義;體會數(shù)形結合的思想在數(shù)學中的重要意義;體會事物間的普遍聯(lián)系.【教學重點】復數(shù)的幾何意義【教學難點】復數(shù)的模一、課前預習:(閱讀教材86--87頁,完成知識點填空):實數(shù)與數(shù)軸上的點是一一對應的,實數(shù)可以用數(shù)軸
2025-11-24 11:29
【總結】一、復習幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)物理意義:物體在某一時刻的瞬時度。2、由定義求導數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2025-11-02 02:53
【總結】?§復數(shù)的幾何意義一.教學目標1.了解復數(shù)的幾何意義,會用復平面內的點和向量來表示復數(shù);2.了解復數(shù)代數(shù)形式的加、減運算的幾何意義。二.重點、難點感悟本章兩個重要解題思想:1.數(shù)形結合思想:復數(shù)與點,復數(shù)與向量,模與距離等;2.化歸思想:把復數(shù)問題實數(shù)化,代數(shù)問題幾何化。三.知識鏈接
2025-11-26 09:27
【總結】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸實軸y軸虛軸(數(shù))(形)復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)復數(shù)z=a+bi直角坐標系中的點
2025-08-16 01:49
【總結】第一篇:導數(shù)的幾何意義評課 《導數(shù)的幾何意義》評課稿 前階段聽了一節(jié)《導數(shù)的幾何意義》,對這節(jié)課,我感覺:(一)從教學目標上看 1、了解導數(shù)概念的實際背景,體會導數(shù)的思想及其內涵; 2、通過函...
2025-10-19 12:07
【總結】郭秀剛問題1:已知復數(shù)Z1、Z在復平面上的對應分別為A、B,O為原點,∠AOB=π/6,若Z1=1+2i,求Z。XYOAB問題2:將問題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點逆時針方向旋轉π/6得向量QB,求點B對應的復數(shù)。XYAPQ
2025-11-08 05:27
【總結】§復習檢測5分鐘之內完成下列兩題:(1)(2+i)(4+3i);(2)化復數(shù)為代數(shù)形式和三解形式.1111222212(cossin)(cossin),?zrizrizz?????????設,則通過計算你發(fā)現(xiàn)了什么問
2025-07-25 14:18
【總結】導數(shù)的幾何意義(課改教案) 教學目的 1.使學生理解導數(shù)的幾何意義;并會用求導數(shù)的方法求切線的斜率和切線方程;利用導數(shù)求法線方程. 2.通過揭示割線與切線之間的內在聯(lián)系對學生進行辯證唯物主義的教育. 教學重點 理解導數(shù)的幾何意義是本節(jié)的重點. 教學過程 一、復習提問 1.導數(shù)的定義是什么?求導數(shù)的三個步驟是什么?求函數(shù)y=x2在x=2處的導數(shù).
2025-09-25 17:22