【總結】探索直角三角形全等的條件真理中學分教處江澤佳::、難點:::如圖,舞臺背景的形狀是兩個直角三角形,工作人員想知道這兩個直角三角形是否全等,你能幫他想個辦法嗎?問題一當每個三角形都有一條直角邊被花盆遮住無法測量,而且他只帶了一把卷尺時,能完成任務嗎?
2024-11-10 21:42
【總結】(3)如圖,在進行測量時,從下向上看,視線與水平線的夾角叫做仰角;從上往下看,視線與水平線的夾角叫做俯角.練習1如圖,為了測量電線桿的高度AB,在離電線桿C處,用高儀CD測得電線桿頂端B的仰角a=22°,
2024-11-10 13:07
【總結】直角三角形全等的判定復習:公理和推論?,根據所給條件能判定全等嗎?依據是什么?已知:△ABC和△A’B’C’中,∠C=∠C’=90°,(1)∠A=∠A’,BC=B’C’(2)AB=A’B’,∠B=∠B’(4)AC=A’C’,BC=B’C’(5)AB=A’B’,AC=A’
2024-11-09 12:31
【總結】第一章直角三角形的邊角關系解直角三角形1課堂講解?解直角三角形2課時流程逐點導講練課堂小結作業(yè)提升(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系(1)三邊之間的關系222cba??
2024-12-28 02:38
【總結】解直角三角形高密市城南中學李宗洲(說課案例)標注點擊每頁幻燈片的圖標,則幻燈片翻頁一教材分析單元知識內容:1直角三角形的邊角關系.2應用勾股定理、Rt△的兩銳角互余及銳角三角函數解直角三角形.3應用解直角三角形的有關知識解決一些簡單的實際問題(包括
2024-11-10 12:43
【總結】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2024-11-10 01:51
【總結】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-21 00:14
【總結】直角三角形一、學情分析學生在學習直角三角形全等判定定理“HL”之前,已經掌握了一般三角形全等的判定方法,在本章的前一階段的學習過程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個定理的證明以及利用這個定理解決相關問題還是一個較高的要求。二、教學任務分析[來源:學_科_網]本節(jié)課是三角形全等的最后一部分內容,也是很重要的一部分內容
2024-11-24 22:38
【總結】等腰三角形和直角三角形?回民中學付靈強等腰三角形和直角三角形知識要點1:(1)掌握等腰三角形的兩底角相等;底邊上的高、中線及頂角平分線三線合一的性質;(2)掌握等腰三角形和等邊三角形的性質和判定方法,能夠靈活應用它們進行有關的論證和計算.例1、如圖,等腰△ABC兩腰上的中線BD、C
2025-07-26 00:43
【總結】單元知識網絡直角三角形的邊角關系解直角三角形知一邊一銳角解直角三角形知兩邊解直角三角形添設輔助線解直角三角形知斜邊一銳角解直角三角形知一直角邊一銳角解直角三角形知兩直角邊解直角三角形知一斜邊一直角邊解直角三角形實際應用抽象出圖形,再添設輔
2025-08-04 13:18
【總結】人教新課標四年級數學下冊本節(jié)課我們主要來學習三角形的分類,同學們要知道分類的方法以及各類三角形的特點。各種各樣的三角形“神舟”三角形郵票銳角銳角三角形:三個角都是銳角的三角形。直角直角三角形:有一個角是直角的三角形。鈍角鈍角三角形:有一個角是鈍角的三角形?!傲鲃蛹t旗”有
2024-11-22 04:21
【總結】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-09 22:05
【總結】,在△ABC中,已知D是BC中點,DE⊥AB,DF⊥AC,垂足分別是E、F,DE=DF.求證:AB=ACABCDEF12:如圖,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=?9.已知:如圖,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A
2025-03-25 06:30
【總結】直角三角形的性質和判定三河鎮(zhèn)中學張紅玉?1什么叫直角三角形??從定義可以知道直角三角形具有一個角是直角的性質,要判斷一個三角形是直角三角形需要判斷這個三角形中有一個角是直角。2直角三角形除了有一個角是直角這條性質外還有沒有別的性質呢?判斷一個三角形是直角三角形除了判斷一個角是直角還有沒有別的方法呢?這節(jié)課我們來探究這些
2024-11-22 00:55
【總結】歸納:已知一個銳角,根據∠A+∠B=90°,可以求另一銳角?!螦=90°-∠B;∠B=90°-∠A;問題一:已知Rt△ABC中,∠C=90°,設∠A的對邊為a,∠B的對邊為b,∠C的對邊為c。ACBab
2024-11-22 01:20