【總結(jié)】一元二次方程的解法配方法共兩課時(shí)直接開平方法適用形式22(0)()????xppmxnpxp??mxnp???左邊降次,右邊開平方注意:當(dāng)p0時(shí),方程沒有實(shí)數(shù)根。運(yùn)用了什么數(shù)學(xué)思想?轉(zhuǎn)化思想(二次方程轉(zhuǎn)化為一次方程)整體思想(mx+n)作為一個(gè)整體
2025-08-07 11:19
【總結(jié)】課前熱身1、一元二次方程3y(y+1)=7(y+2)-5化為一般形式為;其中二次項(xiàng)系數(shù)為;一次項(xiàng)系數(shù)為;常數(shù)項(xiàng)為。3y2-4y-9=03-4-92、已知關(guān)于x的方程(k2-1)x2+kx-1=0為一元二次
2024-11-21 03:06
【總結(jié)】《一元二次方程的解法》教案?一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn):認(rèn)識(shí)形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c為常數(shù))類型的方程,并會(huì)用直接開平方法解.(二)能力訓(xùn)練點(diǎn):培養(yǎng)學(xué)生準(zhǔn)確而簡(jiǎn)潔的計(jì)算能力及抽象概括能力.(三)德育滲透點(diǎn):通過兩邊同時(shí)開平方,將2次方程轉(zhuǎn)化為一次方程,向?qū)W生滲透數(shù)學(xué)新知識(shí)的學(xué)習(xí)往往由未知(新知識(shí))向已知(舊知識(shí))轉(zhuǎn)化
2025-04-16 12:45
【總結(jié)】一元二次方程及其解法知識(shí)點(diǎn)回顧1、整式方程等號(hào)兩邊都是關(guān)于未知數(shù)的整式的方程,叫做整式方程.2、一元二次方程一個(gè)整式方程整理后如果只含有一個(gè)未知數(shù),且未知數(shù)的最高次項(xiàng)的次數(shù)為2次的方程,叫做一元二次方程.3、一元二次方程的一般形式方程ax2+bx+c=0(a
2025-08-05 01:46
【總結(jié)】用一元二次方程解決問題一元二次方程的應(yīng)用課前參與預(yù)習(xí)內(nèi)容:課本P24問題1,P26問題3、4.知識(shí)整理:1、列方程的關(guān)鍵是找出相等關(guān)系.列一元二次方程解應(yīng)用題一般有“審、設(shè)、列、解、檢驗(yàn)、答”六個(gè)步驟。2、進(jìn)一步增強(qiáng)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型的能力,并能根據(jù)實(shí)際情況對(duì)方程的根的情況進(jìn)行討論。嘗試練習(xí):1、用長(zhǎng)為100
2024-12-08 21:49
【總結(jié)】一元二次方程的解法大全【直接開平方法解一元二次方程】把方程ax2+c=0(a≠0),這解一元二次方程的方法叫做直接開平方法。例:用直接開平方法解方程:1.9x2-25=0;2.(3x+2)2-4=0;4.(2x+3)2=3(4x+3).解:1.9x2-25=09x2=252.(3x+2)2-4=0(3x+2)2=43x+2=
2025-07-23 22:54
【總結(jié)】一元二次方程的解法(直接開平方法、配方法、公式法和分解法)一元二次方程定義:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)為2的整式方程叫做一元二次方程。一般形式:ax2+bx+c=0(a,b,c為常數(shù),x為未知數(shù),且a≠0)。頂點(diǎn)式:y=a(x-h)2+k(a≠0,a、h、k為常數(shù))交點(diǎn)式:y=a(x-x?)(x-x?)(a≠0)[有交點(diǎn)A(
2025-06-25 01:45
【總結(jié)】1一元二次方程的解法第三課時(shí)配方法【學(xué)習(xí)目標(biāo)】1、掌握用配方法解數(shù)字系數(shù)的一元二次方程.2、使學(xué)生掌握配方法的推導(dǎo)過程,熟練地用配方法解一元二次方程。3、在配方法的應(yīng)用過程中體會(huì)“轉(zhuǎn)化”的思想,掌握一些轉(zhuǎn)化的技能。【學(xué)習(xí)重點(diǎn)】使學(xué)生掌握配方法,解一元二次方程?!緦W(xué)習(xí)難點(diǎn)】把一元二次方程轉(zhuǎn)化為qp
2025-01-07 11:23
【總結(jié)】第1章二次函數(shù)二次函數(shù)與一元二次函數(shù)的聯(lián)系學(xué)習(xí)目標(biāo),理解二次函數(shù)與一元二次方程之間的聯(lián)系,會(huì)用二次函數(shù)圖象求一元二次方程的近似解;(重點(diǎn))形結(jié)合思想的應(yīng)用.(難點(diǎn))(1)一次函數(shù)y=x+2的圖象與x軸的交點(diǎn)為(,),一元一次方程x+2=0的根為________.
2024-12-28 05:55
【總結(jié)】第一篇:二次函數(shù)與一元二次方程教學(xué)反思 二次函數(shù)與一元二次方程教學(xué)反思 王英杰 教學(xué)目標(biāo)的設(shè)定: 一、教學(xué)知識(shí)點(diǎn):(1)、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系....
2024-10-26 09:56
【總結(jié)】教學(xué)目標(biāo):1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系,理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)根.?,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神,通過觀察二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù),討論一元二次方程的根的情況,,培養(yǎng)合作交流意識(shí).,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性
2025-04-16 13:00
【總結(jié)】二次函數(shù)與一元二次方程和二次函數(shù)的應(yīng)用主講於憲單位丹徒區(qū)冷遹中學(xué)審稿丹徒區(qū)教研室張文全?學(xué)習(xí)目標(biāo)?知識(shí)回顧?典型例題和及時(shí)反饋學(xué)習(xí)目標(biāo)?了解二次函數(shù)的圖像與x軸的交點(diǎn)個(gè)數(shù)和
2025-08-23 13:16
【總結(jié)】一元二次方程正方形桌面的面積是2m2.問:正方形的邊長(zhǎng)與面積之間有何數(shù)量關(guān)系?你用什么樣的數(shù)學(xué)式子來描述它們之間的關(guān)系?設(shè)正方形桌面的邊長(zhǎng)是xm,可得:x2=2.【問題情境】問題1:如圖,矩形花圃一面靠墻,另外三面所圍的柵欄的總長(zhǎng)度是19m,花圃的面積是24m2.問:矩形花圃的寬與面積之間有何關(guān)系?你用
2024-12-28 00:07
【總結(jié)】第2課時(shí)應(yīng)用一元二次方程學(xué)習(xí)目標(biāo):1.會(huì)用一元二次方程解決銷量隨銷售單價(jià)變化而變化的市場(chǎng)營(yíng)銷類應(yīng)用題.2.通過列方程解應(yīng)用題,進(jìn)一步認(rèn)識(shí)方程模型的重要性,提高邏輯思維能力和分析問題、解決問題的能力.學(xué)習(xí)重點(diǎn):會(huì)用一元二次方程求解利潤(rùn)類問題.學(xué)習(xí)難點(diǎn):將實(shí)際問題抽象為一元二次方程的模型,尋找等量關(guān)系
2024-11-22 01:19
【總結(jié)】九年級(jí)數(shù)學(xué)(下)第二章二次函數(shù)8.二次函數(shù)與一元二次方程(2)一元二次方程的圖象解法陽泉市義井中學(xué)高鐵牛?(1).用描點(diǎn)法作二次函數(shù)y=x2+2x-10的圖象;一元二次方程的圖象解法?你能利用二次函數(shù)的圖象估計(jì)一元二次方程x2+2x-10=0的根嗎?做一做P641駛向勝利的彼岸?(2).觀
2024-11-30 08:46