【總結(jié)】1.掌握向量的定義,向量和數(shù)量的區(qū)別。2.通過(guò)力和力的分析實(shí)例,了解向量的實(shí)際背景。3.掌握向量表示,零向量和單位向量。4.平行向量、共線向量、相等向量的定義。平面向量一看書(shū)P82~84(限時(shí)5分鐘)學(xué)習(xí)目標(biāo)1.什么是向量?向量和數(shù)量有何不同?向量:即有大小又有方向的量(數(shù)量:只有大小,沒(méi)有方向的量)
2024-11-09 00:53
【總結(jié)】平面向量的坐標(biāo)運(yùn)算鄭德松平面向量的坐標(biāo)運(yùn)算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問(wèn)題:若已知=(1,3),=(5,1),
2024-11-12 16:44
【總結(jié)】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2024-11-09 08:07
【總結(jié)】空間向量在立體幾何中的應(yīng)用利用向量判斷位置關(guān)系利用向量可證明四點(diǎn)共面、線線平行、線面平行、線線垂直、線面垂直等問(wèn)題,其方法是通過(guò)向量的運(yùn)算來(lái)判斷,這是數(shù)形結(jié)合的典型問(wèn)題例1、在正方體AC1中,E、F分別是BB1、CD的中點(diǎn),求證:面AED⊥面A1FD1ABCDA1B1C1D1
2024-11-18 07:54
【總結(jié)】復(fù)習(xí)回顧:平面向量1、定義:既有大小又有方向的量。幾何表示法:用有向線段表示字母表示法:用小寫(xiě)字母表示,或者用表示向量的有向線段的起點(diǎn)和終點(diǎn)字母表示。相等向量:長(zhǎng)度相等且方向相同的向量ABCD2、平面向量的加法、減法與數(shù)乘運(yùn)算向量加法的三角形法則ab向量加法的平行四邊形法則
2024-11-17 13:00
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-12 17:25
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實(shí)際問(wèn)題的重要思想方法;?(3)能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表達(dá).?教學(xué)重點(diǎn):平面向量基本定理.
2024-11-12 18:20
【總結(jié)】平面向量的線性運(yùn)算向量加法運(yùn)算及其幾何意義問(wèn)題提出、平行向量、相等向量的含義分別是什么?,向量的大小和方向是如何反映的?什么叫零向量和單位向量?,從而給數(shù)賦予了新的內(nèi)涵.如果向量?jī)H停留在概念的層面上,那是沒(méi)有多大意義的.我們希望兩個(gè)向量也能相加,拓展向量的數(shù)學(xué)意義,提升向量的理論價(jià)值,這就需要建立相關(guān)的原理和法則
2024-11-12 16:45
【總結(jié)】向量減法運(yùn)算及其幾何意義問(wèn)題提出個(gè)向量的和向量分別如何操作?abaabba+ba+b?a+0=0+a=aa與b為相反向量a+b=0a+b=b+a(a+b)+c=a+(b+c)|a+b|≤|a|+|b||a+b|≥||a|-|b||112
2024-11-12 17:26
【總結(jié)】1、向量定義復(fù)習(xí)2、向量加法的三角形法則3、向量加法的平行四邊形法則注:兩個(gè)向量的和仍是向量。具有大小和方向的量ABCABDC問(wèn)題:一架飛機(jī)由北京飛往香港,然后再由香港返回北京,我們把北京記作A點(diǎn),香港記作B點(diǎn),那么這
【總結(jié)】高中數(shù)學(xué)杭州實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校一.復(fù)習(xí)平面向量的基本定理如果,是平面內(nèi)兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)t1,t2使OCMN對(duì)向量a進(jìn)行分解:二、空間向量的基本定理如果三個(gè)向量不共面,那么對(duì)
2024-11-10 00:24
【總結(jié)】空間向量復(fù)習(xí)1、基礎(chǔ)知識(shí)2、向量法3、坐標(biāo)法廣州市第17中學(xué)數(shù)學(xué)科廖舜萍空間向量基礎(chǔ)知識(shí)?空間向量的坐標(biāo)表示:?空間向量的運(yùn)算法則:若奎屯王新敞新疆向量的共線和共面?共線:?共面?兩點(diǎn)間的距離公式?模長(zhǎng)公式?夾角公式
2024-11-09 05:40
【總結(jié)】向量的坐標(biāo)表示與運(yùn)算復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有
2024-11-09 03:52
2024-11-12 19:04
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《向量加法運(yùn)算及其幾何意義》教學(xué)目標(biāo)?掌握向量的加法運(yùn)算,并理解其幾何意義;?會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問(wèn)題的能力;?通過(guò)將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會(huì)用