【總結(jié)】專題十六圓錐曲線1.雙曲線的焦距是10,則實數(shù)的值是()A.B.4C.16D.812.橢圓的右焦點到直線的距離是()A.B.C.1D.3.若雙曲線的一條準線與拋物線的準線重合,則雙曲線的離心率為()A.
2025-08-18 17:18
【總結(jié)】圓錐曲線的應(yīng)用高三備課組一、基本知識概要:解析幾何在日常生活中應(yīng)用廣泛,如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題是解決應(yīng)用題的關(guān)鍵,而建立數(shù)學(xué)模型是實現(xiàn)應(yīng)用問題向數(shù)學(xué)問題轉(zhuǎn)化的常用常用方法。本節(jié)主要通過圓錐曲線在實際問題中的應(yīng)用,說明數(shù)學(xué)建模的方法,理解函數(shù)與方程、等價轉(zhuǎn)化、分類討論等數(shù)學(xué)思想。二、例題:例題1:設(shè)有一顆慧星沿一橢圓軌道
2024-11-09 08:48
【總結(jié)】2020年12月19日星期六Ctrl+Alt+M=菜單欄;Ctrl+Alt+T=工具欄;Ctrl+Alt+S=滾動條;Ctrl+Alt+H=窗口;Ctrl+Alt+B=背景xyo如圖,在直角坐標系中,平分第一、三象限的直線的方程是(1)直線上一點M(x0,y0)的坐標x0,y0是方程x-y=0的解;x-y=0滿足:
2024-11-12 01:35
【總結(jié)】新課講解:函數(shù)y=ax2的圖象是關(guān)于y軸對稱的拋物線.這條拋物線是所有以方程y=ax2的解為坐標的點組成的.oyx這就是說:如果點M(x0,y0)是拋物線上的點任意一點,那么(x0,y0)一定是這個方程的解;反過來,如果(x0,y0)是方程y=ax2的解,那么以它
2024-11-10 12:25
【總結(jié)】圓錐曲線橢圓雙曲線拋物線定義標準方程幾何性質(zhì)直線與圓錐曲線的位置關(guān)系一、知識點框架雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2121FFaaM
2025-08-16 02:16
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習強化雙基系列課件79《圓錐曲線-圓錐曲線的應(yīng)用》圓錐曲線定義應(yīng)用第1課時一、基本知識概要:·涉及圓錐曲線上的點與兩個焦點構(gòu)成的三角形,常用第一定義結(jié)合正余弦定理;·涉及焦點、準線、圓錐曲線上的點,常用統(tǒng)一的定義。橢圓的定義:點集M={P||PF1
2024-11-11 08:49
【總結(jié)】平面內(nèi)到兩定點F1、F2距離之和為常數(shù)2a(①)的點的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當②時,表示線段F1F2;當③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25
【總結(jié)】大慶目標教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【總結(jié)】《圓錐曲線與方程》起始課湖北省荊門市龍泉中學(xué)葉俊杰《圓錐曲線與方程》起始課荊門市龍泉中學(xué)葉俊杰我們知道,用一個垂直于圓錐的軸的平面截圓錐,截口曲線(截面與圓錐側(cè)面的交線)是一個圓.如果改變平面與圓錐軸線的夾角,會得到什么圖形呢?如圖,用一個不垂直于圓錐的軸的平面截圓錐,當截面與圓錐的
2025-08-05 04:44
【總結(jié)】知識指要橢圓注1:總有ab0,c2=a2-b2xOyF1F2MxOyF1F2M注2:判斷橢圓標準方程的焦點在哪個軸上的準則:焦點在分母大的那個軸上注3:橢圓上到焦點的距離最大和最小的點是橢圓長軸的兩個端點知識指要橢圓1、橢圓第
2024-11-09 23:28
【總結(jié)】圓錐曲線復(fù)習(二)數(shù)學(xué)高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【總結(jié)】圓錐曲線中的定點問題明對任意情況都成立找到定點,再證方法三:通過特殊位置的值求出方法二:通過計算可以)則直線過(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點F(1,0),O為坐
2025-08-05 04:45
【總結(jié)】圓錐曲線知識點小結(jié):橢圓:平面內(nèi)與兩個定點的距離之和等于定長(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。數(shù)學(xué)語言:常數(shù)2a=,軌跡是線段;常數(shù)2a,軌跡不存在;雙曲線:平面內(nèi)與兩個F1,F(xiàn)2的距離之差的絕對值等于常數(shù)(小于||F1F2)的點的軌跡叫做雙曲線。這兩個定點叫做雙曲線的焦點,兩焦點的距離叫做雙曲線的焦距。數(shù)學(xué)語言
2025-08-10 15:54
【總結(jié)】圓錐曲線―概念、方法、題型、及應(yīng)試技巧總結(jié):(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)2a,且此常數(shù)2a一定要大于21FF,當常數(shù)等于21FF時,軌跡是線段F1F2,當常數(shù)小于21FF時,無軌跡;雙曲線中,與兩定點F1,F(xiàn)2的距離的差的絕對值等
2025-01-08 20:52
【總結(jié)】平面內(nèi)到兩定點F1、F2距離之差的絕對值等于常數(shù)2a(2a|F1F2|)的點的軌跡復(fù)習回顧表達式|PF1|+|PF2|=2a(2a|F1F2|)1
2024-11-12 17:25