【總結】[鍵入文字]課題三角函數(shù)基礎,兩角和與差、倍角公式教學目標能運用兩角和與差公式、倍角公式解答問題。重點、難點公式的熟記和運用。教學內(nèi)容任意角角的頂點與原點重合,角的始邊與軸的正半軸重合,此時角的終邊在第幾象限,我們就說這個角是第幾象限的角,(1)中的角、角都是第一象限的角,(2)中角、角都是第二象限角.特別規(guī)定:如果角的終邊在坐標軸
2025-06-25 02:42
【總結】《函數(shù)的和、差、積、商的導數(shù)》教案[中國*^教育出#&@版網(wǎng)]一、教學目標(或差)的導數(shù)法則,學會用法則求一些函數(shù)的導數(shù).[中#國教育@出版&%網(wǎng)~][來源:學&科&網(wǎng)],學會用法則求乘積形式的函數(shù)的導數(shù)奎屯王新敞新疆二、教學重點:用定義推導函數(shù)的和、差、積、商的求導法
2025-11-28 20:50
【總結】第一篇:學案4兩角和與差的三角函數(shù)及倍角公式 學案4兩角和、差及倍角公式 (一)【考綱解讀】 ,二倍角的正弦,余弦,正切公式,了解它們的內(nèi)在聯(lián)系;.【基礎回顧】、差角公式: sin(a±b)=...
2025-10-03 15:21
【總結】三角函數(shù)的兩角和差及倍角公式練習題一、選擇題:1、若的值是 A.2 B.-2 C. D.2、如果 A. B. C. D.3、如果 A. B. C. D.4、若 A. B. C. D.5、在則這個三角形的形狀是 A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等腰三角形二、填空題:
2025-03-24 05:42
【總結】兩角和與差的三角函數(shù)一、素質(zhì)教育目標(一)知識教學點1.兩角和與差的正弦.2.兩角和與差的余弦.3.兩角和與差的正切.(二)能力訓練點1.掌握兩角和與差的正弦、余弦、正切公式及其推導.2.通過這些公式的推導,使學生了解它們的內(nèi)在聯(lián)系,從而培養(yǎng)學生的邏輯推理能力.3.能靈活地應用這些公式進行計算
2025-11-08 12:22
【總結】第二章三角、反三角函數(shù)一、考綱要求、弧度的意義,能正確進行弧度和角度的互換。、余弦、正切的定義,了解余切、正割、余割的定義,掌握同角三角函數(shù)的基本關系式,掌握正弦、余弦的誘導公式,理解周期函數(shù)與最小正周期的意義。、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。,進行簡單三角函數(shù)式的化簡,求值和恒等式的證明。、余弦函數(shù),正切函數(shù)的圖像和性質(zhì),會用“五點法”畫正弦
2025-08-04 23:44
【總結】a·b=|a||b|cosθ向量數(shù)量積的定義是?向量與自身的內(nèi)積為?兩個單位向量的數(shù)量積等于?向量長度的平方它們之間夾角的余弦函數(shù)值思考?yxoP1βP2α在直角坐標系中,以原點為中心,單位長度為半徑作單位圓,以原點為頂點,x軸為始邊分別作角任意α,β與單位圓交于
2025-11-08 15:05
【總結】二倍角的正弦、余弦、正切公式學習目標:1、以兩角和正弦、余弦和正切公式為基礎,推導二倍角正弦、余弦和正切公式2、二倍公式角的理解及其靈活運用回憶兩角和的正弦、余弦、正切公式??????sinsincoscos)cos(?????????sincoscossin)sin(
2025-11-09 08:49
【總結】?函數(shù)的和、差、積、商的導數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
2025-11-08 20:20
【總結】第一篇:兩角和與差的三角函數(shù)解斜三角形三角變換中的最值問題教案 兩角和與差的三角函數(shù),解斜三角形·三角變換中的最值問題·教案 北京市第一七一中學許綺菲 教學目標 1.復習、鞏固和、差、倍、半角...
2025-10-05 03:04
【總結】第三章三角恒等變形,第一頁,編輯于星期六:點三十五分。,§2兩角和與差的三角函數(shù)2.3兩角和與差的正切函數(shù),第二頁,編輯于星期六:點三十五分。,,自主學習梳理知識,課前基礎梳理,第三頁,編輯于星期六:...
2025-10-13 18:58
【總結】三角函數(shù)圖象和性質(zhì)----正弦、余弦、函數(shù)圖象(1)列表(2)描點(3)連線6?3?2?32?65??67?34?23?35?611??2021230121?23?21230021?23?1????2,0,sin??xxy用描點法作出函數(shù)圖象的主要步驟是怎樣的?---
2025-11-13 04:21
【總結】第二章導數(shù)與微分?導數(shù)的概念?函數(shù)的和、差、積、商的求導法則?復合函數(shù)的求導法則?隱函數(shù)的導數(shù)?初等函數(shù)的導數(shù)?﹡導數(shù)的經(jīng)濟定義?高階導數(shù)?函數(shù)的微分下頁1.導數(shù)的定義2.導數(shù)的幾何意義3.可導與連續(xù)的關系首頁上頁下頁
2025-09-19 14:11
【總結】角的和差兩角和與差一般地,如果一個角的度數(shù)是另兩個角的度數(shù)之和,那么這個角叫做另兩個角的和;如果一個角的度數(shù)是另兩個角的度數(shù)之差,那么這個角叫做另兩個角的差。兩條線段的和與差一般地,如果一條線段的長度是另兩條線段長度的和,那么這條線段叫做另兩條線段的和;如
2025-08-01 14:02
【總結】數(shù)學:“兩角差的余弦公式”教學設計一、教學內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學變換的結合點和交匯點上,是前面所學三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2025-11-09 21:26