【總結(jié)】主講老師:習(xí)題講評復(fù)習(xí)幾個重要的不等式:復(fù)習(xí)幾個重要的不等式:)(.2,,.122”時取“當(dāng)且僅當(dāng)那么如果?????baabbaRba復(fù)習(xí)幾個重要的不等式:)(.2,,.122”時取“當(dāng)且僅當(dāng)那么如果?????ba
2024-11-09 04:45
【總結(jié)】第一篇:不等式證明練習(xí)題 不等式證明練習(xí)題 (1/a+2/b+4/c)*1 =(1/a+2/b+4/c)*(a+b+c) 展開,得 =1+2a/b+4a/c+b/a+2+4b/c+c/a+2...
2024-10-27 11:21
【總結(jié)】第一篇:均值不等式練習(xí)題 均值不等式求最值及不等式證明2013/11/2 3題型 一、均值不等式求最值 例題: 1、湊系數(shù):當(dāng)0x4時,求y=x(8-2x)的最大值。 2、湊項:已知x...
2024-11-05 18:14
【總結(jié)】第一篇:不等式證明練習(xí)題 11n+3恒成立,則n的最大值是()a-bb-ca-c A.2B.3C.4D.61.設(shè)abc,n?N,且 x2-2x+22.若x?(-¥,1),則函數(shù)y=有()2x...
2024-10-29 06:56
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-05 10:13
【總結(jié)】邊城高級中學(xué)張秀洲1、了解兩個正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實際的應(yīng)用問題.自學(xué)教材P5—P8解決下列問題二、掌握用基本不等式求一些函數(shù)的最值及實際的應(yīng)用問題.三、《教材》習(xí)題第5、6、7、8、9、10、11題.
2025-07-24 03:13
【總結(jié)】第一篇:基本不等式教學(xué)設(shè)計 《基本不等式》教學(xué)設(shè)計 開江中學(xué)魏江蘭 目標分析 依據(jù)《新課程標準》對《不等式》學(xué)段的目標要求和學(xué)生的實際情況,特確定如下目標: 1、知識與能力目標:理解掌握...
2024-10-24 16:35
【總結(jié)】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【總結(jié)】第一篇:不等式練習(xí)題(文科) 不等式練習(xí)題 1、設(shè)a,b,c?R,且ab,則() A.a(chǎn)cbc B. 1123ab C.a(chǎn)b 2D.a(chǎn)b32、設(shè)a,b,c?R,且ab,則()...
2024-11-14 06:40
【總結(jié)】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2025-08-05 03:53
【總結(jié)】—求函數(shù)的最值1、如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b時取“=”號)(均值不等式)abba??2一、基本不等式回顧ab2)2(ba??2abab??2、公式變形:特別地,a=b=0時也成立(當(dāng)a、b∈R成立嗎?)
2024-11-03 19:19
【總結(jié)】一、設(shè)疑引入等關(guān)系嗎?找出一些相等關(guān)系或不能在這個圖中數(shù)學(xué)家大會的會標,你)0)(2(?2,.122222????????baabbabaabbaba你能證明嗎時,等號成立當(dāng)且僅當(dāng)我們有一般地,對于任意實數(shù)二、新知探究稱之為基本不等式通常寫作則若特別地,22,0,0,.2baababb
2025-08-05 05:43
【總結(jié)】例.0,0(1)10,___________(2)10,___________xyxyxyxyxy??????如果那么如果那么25?210?最值定理:(1)和定--積最大.(2)積定--和最小.()xyfd
2025-08-05 04:40
【總結(jié)】基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-16 22:38
【總結(jié)】基本不等式應(yīng)用一.基本不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)
2025-03-24 03:55