【總結(jié)】圓錐曲線基礎(chǔ)訓(xùn)練題集第1頁共12頁橢圓基礎(chǔ)訓(xùn)練題1.已知橢圓長半軸與短半軸之比是5:3,焦距是8,焦點在x軸上,則此橢圓的標(biāo)準(zhǔn)方程是()(A)5x2+3y2=1(B)25x2+9y2=1(C)3x2+5y2=1(D)9x2+25y2=12.橢圓5x2+4y2=1的
2025-01-09 10:03
【總結(jié)】......圓錐曲線專題練習(xí)一、選擇題,則到另一焦點距離為()A.B.C.D.2.若橢圓的對稱軸為
2025-06-24 02:09
【總結(jié)】......圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪
2025-06-24 02:10
【總結(jié)】....圓錐曲線經(jīng)典題型 一.選擇題(共10小題)1.直線y=x﹣1與雙曲線x2﹣=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是( ?。〢.(1,) B.(,+∞) C.(1,+∞) D.(1,)∪(,+∞)2.已知M(x0,y0)是雙曲線C:=1上的一點,F(xiàn)
2025-06-23 07:21
【總結(jié)】橢圓中的相關(guān)問題一、橢圓中的最值問題:,內(nèi)有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設(shè),則的
2025-07-21 11:38
【總結(jié)】第十章圓錐曲線★知識網(wǎng)絡(luò)★橢圓雙曲線拋物線定義定義定義標(biāo)準(zhǔn)方程標(biāo)準(zhǔn)方程幾何性質(zhì)幾何性質(zhì)應(yīng)用應(yīng)用標(biāo)準(zhǔn)方程幾何性質(zhì)應(yīng)用圓錐曲線直線與圓錐曲線位置關(guān)系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內(nèi)與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2025-08-04 09:58
【總結(jié)】......(北師大版)高二數(shù)學(xué)《圓錐曲線》基礎(chǔ)測試試題一、選擇題,則到另一焦點距離為()A.B.C.D.2.橢圓+=1
2025-03-25 00:03
【總結(jié)】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標(biāo)準(zhǔn)方程(1、2)與參數(shù)方程4、橢圓性質(zhì):圖像特點、范圍、頂點、離心率、對稱性、準(zhǔn)線、焦半徑、通徑等5、橢圓與直線的位置關(guān)系二、雙曲線1、定義(第一、第二定義)2、標(biāo)準(zhǔn)方程3、性質(zhì)“圖像、范圍、頂點、離心率、對稱性、準(zhǔn)線、漸近線、焦半徑、通徑等4、雙曲線與直
2025-07-23 20:57
【總結(jié)】圓錐曲線與方程習(xí)題圓錐曲線與方程練習(xí)題及答案一、選擇題【共12道小題】1、以的焦點為頂點,頂點為焦點的橢圓方程為(?)A.???????????B.????
2025-08-04 14:53
【總結(jié)】精心整理,祝高考學(xué)子有好成績高考圓錐曲線試題精選一、選擇題:(每小題5分,計50分)1、(2008海南、寧夏文)雙曲線的焦距為()A.3 B.4 C.3 D.42.(2004全國卷Ⅰ文、理)橢圓的兩個焦點為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個交點為P,則=() A.B.C.D.43.(
2025-08-05 18:10
【總結(jié)】......圓錐曲線橢圓專項訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準(zhǔn)方程: (1)與橢圓有相同焦點,過點; (2)一個焦點為(0,1)長軸和短軸的長度之比為t; (3)兩焦點與短軸一個端點為正三
2025-06-22 15:55
【總結(jié)】圓錐曲線與方程單元測試時間:90分鐘分?jǐn)?shù):120分一、選擇題(每小題5分,共60分)1.橢圓的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為(?。. B. C.2 D.42.過拋物線的焦點作直線l交拋物線于A、B兩點,若線段AB中點的橫坐標(biāo)為3,則等于(?。〢.10 B.8 C.6
2025-06-22 23:13
【總結(jié)】周末練習(xí)8一、填空題1、對于曲線C∶=1,給出下面四個命題:①由線C不可能表示橢圓;②當(dāng)1<k<4時,曲線C表示橢圓;③若曲線C表示雙曲線,則k<1或k>4;④若曲線C表示焦點在x軸上的橢圓,則1<k<其中所有正確命題的序號為_____________.2、已知橢圓的兩個焦點分別為,點P在橢圓上,且滿足,,則該橢圓的離心率為,點在雙曲線上,則點到該
2025-06-07 18:31
【總結(jié)】......(2,0),右頂點為(1)求雙曲線C的方程;(2)若直線與雙曲線C恒有兩個不同的交點A和B,且(其中O為原點).求k的取值范圍.解:(Ⅰ)設(shè)雙曲線方程為由已知得故雙曲線C的方
2025-06-22 15:52
【總結(jié)】文科圓錐曲線、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為() 【答案】C【命題意圖】本題主要考查橢圓的性質(zhì)及數(shù)形結(jié)合思想,是簡單題.【解析】∵△是底角為的等腰三角形,∴,,∴=,∴,∴=,,焦點在軸上,與拋物線的準(zhǔn)線交于兩點,;則的實軸長為()
2025-06-25 16:46