【總結(jié)】第一篇:平面向量基本定理及相關(guān)練習(xí)(含答案) 平面向量2預(yù)習(xí): :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時,a和b同向;(2)...
2024-11-15 04:03
【總結(jié)】平面向量基本定理平面向量的基本定理設(shè)、是同一平面內(nèi)的兩個不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關(guān)系。1ea2e研究OC=OM+ON=2?1?OA+OB1?1e2e2?即a=+
2024-10-19 17:16
【總結(jié)】平面向量基本定理常用題型歸納何樹衡劉建一平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且僅有一對實數(shù)使得=平面向量基本定理是正交分解和坐標(biāo)表示的基礎(chǔ),它為“數(shù)”和“形”搭起了橋梁,,認(rèn)為大致分為以下題型:一、基本題型隨處可見例1:在直角坐標(biāo)平面上,已知O是原點,,若,求實數(shù)x,y的值解: ∴ 即x為-3,y為3
2025-03-25 01:38
【總結(jié)】第二節(jié)平面向量的基本定理及坐標(biāo)表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實數(shù)λ1,λ2,使a=.其中
2024-11-12 16:44
【總結(jié)】......1.若不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風(fēng)平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,不管是潮起潮落,也不管是陰晴圓缺,你都可以免去浮躁,義無反顧,勇往直前,輕松自如地走好人生路上
2025-07-20 14:28
【總結(jié)】實用標(biāo)準(zhǔn)文案平面向量中“三點共線定理”妙用對平面內(nèi)任意的兩個向量的充要條件是:存在唯一的實數(shù),使由該定理可以得到平面內(nèi)三點共線定理:三點共線定理:在平面中A、B、P三點共線的充要條件是:對于該平面內(nèi)任意一點的O,存在唯一的一對實數(shù)x,y使得:且。特別地有:當(dāng)點P在線段AB上時, 當(dāng)點P在線段AB之外時, 筆者在經(jīng)過多年高三復(fù)習(xí)教學(xué)中發(fā)現(xiàn),運用
2025-08-05 06:02
【總結(jié)】 平面向量的概念及其線性運算1.向量的有關(guān)概念名稱定義備注平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為0向量運算定 義法則(或幾何意義)運算律
【總結(jié)】平面向量基本定理及坐標(biāo)運算1.選擇題1.若向量=(1,2),=(3,4),則=()A(4,6)B(-4,-6)C(-2,-2)D(2,2)2.若向量a=(x-2,3)與向量b=(1,y+2)相等,則 ()A.x=1,y=3 B.x=3,y=1 C.x=1,y=-5 D.x=5,y=-13.下列
2025-03-25 01:22
【總結(jié)】第2節(jié)平面向量基本定理及其坐標(biāo)表示(對應(yīng)學(xué)生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-12 01:35
【總結(jié)】第二節(jié)平面向量基本定理及坐標(biāo)表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【總結(jié)】......平面向量的實際背景及基本概念:我們把既有大小又有方向的量叫向量。:只有大小沒有方向的量叫做數(shù)量。數(shù)量與向量的區(qū)別:數(shù)量只有大小,是一個代數(shù)量,可以進行代數(shù)運算、比較大?。幌蛄坑蟹较?,大小,雙重性,不能比較大小
2025-06-25 06:54
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2024-11-10 00:27
【總結(jié)】第一篇:第二章平面向量教學(xué)設(shè)計 第二章平面向量教學(xué)設(shè)計 本資料為woRD文檔,請點擊下載地址下載全文下載地址 新課標(biāo)人教版 必修4第二章平面向量 內(nèi)容:《平面向量》 課型:新授課 第二部...
2024-11-16 23:06
【總結(jié)】......平面向量一、知識溫故:既有大小又有方向的量叫向量,有二個要素:大小、方向.:①用有向線段表示;②用字母、等表示;③平面向量的坐標(biāo)表示:分別取與軸、軸方向相同的兩個單位向量、作為基底。任作一個向量,由平面向量基本定理
2025-04-17 01:00
【總結(jié)】題型二:平面向量的共線問題1、若A(2,3),B(x,4),C(3,y),且=2,則x=,y=2、已知向量a、b,且=a+2b,=-5a+6b,=7a-2b,則一定共線的三點是()A.A、B、DB.A、B、CC.B、C、DD.A、C、D3、如果e1、e2是平面α內(nèi)兩個不共線的向量
2025-03-25 01:23