freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx年冀教版小升初數學總復習資料-文庫吧

2025-04-01 12:08 本頁面


【正文】 三位,原來的數就縮小1000倍…… 3. 小數點向左移或者向右移位數不夠時,要用“0補足位。 (四)分數的基本性質 分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。 (五)分數與除法的關系 1. 被除數247。除數= 被除數/除數 2. 因為零不能作除數,所以分數的分母不能為零。 3. 被除數 相當于分子,除數相當于分母。 四 運算的意義(一)整數四則運算 1整數加法:把兩個數合并成一個數的運算叫做加法。 在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。 加數+加數=和 一個加數=和-另一個加數 2整數減法:已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。 在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。 加法和減法互為逆運算。 3整數乘法:求幾個相同加數的和的簡便運算叫做乘法。 在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。 在乘法里,0和任何數相乘都得0. 1和任何數相乘都的任何數。 一個因數 一個因數 =積 一個因數=積247。另一個因數 4 整數除法:已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。 在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。 乘法和除法互為逆運算。 在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。 被除數247。除數=商 除數=被除數247。商 被除數=商除數 (二)小數四則運算 1. 小數加法:小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。 2. 小數減法:小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算. 3. 小數乘法:小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡便運算;一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多少。 4. 小數除法:小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因數,求另一個因數的運算。 5. 乘方: 求幾個相同因數的積的運算叫做乘方。例如 3 3 =32 (三)分數四則運算 1. 分數加法:分數加法的意義與整數加法的意義相同。 是把兩個數合并成一個數的運算。 2. 分數減法:分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,求另一個加數的運算。 3. 分數乘法:分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。 4. 乘積是1的兩個數叫做互為倒數。 5. 分數除法:分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因數,求另一個因數的運算。 (四)運算定律 1. 加法交換律:兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。 2. 加法結合律:三個數相加,先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。 3. 乘法交換律:兩個數相乘,交換因數的位置它們的積不變,即ab=ba。 4. 乘法結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把后兩個數相乘,再和第一個數相乘,它們的積不變,即(ab)c=a(bc) 。5. 乘法分配律:兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)c=ac+bc 。 6. 減法的性質:從一個數里連續(xù)減去幾個數,可以從這個數里減去所有減數的和,差不變,即abc=a(b+c) 。(五)運算法則 1. 整數加法計算法則:相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。 2. 整數減法計算法則:相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合并在一起,再減。 3. 整數乘法計算法則:先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的數加起來。 4. 整數除法計算法則:先從被除數的高位除起,除數是幾位數,就看被除數的前幾位; 如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數要小于除數。 5. 小數乘法法則:先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用“0”補足。 6. 除數是整數的小數除法計算法則:先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有余數,就在余數后面添“0”,再繼續(xù)除。 7. 除數是小數的除法計算法則:先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補“0”),然后按照除數是整數的除法法則進行計算。 8. 同分母分數加減法計算方法:同分母分數相加減,只把分子相加減,分母不變。 9. 異分母分數加減法計算方法:先通分,然后按照同分母分數加減法的的法則進行計算。 10. 帶分數加減法的計算方法:整數部分和分數部分分別相加減,再把所得的數合并起來。 11. 分數乘法的計算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。 12. 分數除法的計算法則:甲數除以乙數(0除外),等于甲數乘乙數的倒數。 (六) 運算順序 1. 小數四則運算的運算順序和整數四則運算順序相同。 2. 分數四則運算的運算順序和整數四則運算順序相同。 3. 沒有括號的混合運算:同級運算從左往右依次運算;兩級運算 先算乘、除法,后算加減法。 4. 有括號的混合運算:先算小括號里面的,再算中括號里面的,最后算括號外面的。 5. 第一級運算:加法和減法叫做第一級運算。 6. 第二級運算:乘法和除法叫做第二級運算。 五 應用(一)整數和小數的應用 1 簡單應用題 (1) 簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通常叫做簡單應用題。 (2) 解題步驟: a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。 b選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,確定算法,進行解答并標明正確的單位名稱。 C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現錯誤,馬上改正。 2 復合應用題 (1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。 (2)含有三個已知條件的兩步計算的應用題。 求比兩個數的和多(少)幾個數的應用題。 比較兩數差與倍數關系的應用題。 (3)含有兩個已知條件的兩步計算的應用題。 已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。 已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。 (4)解答連乘連除應用題。 (5)解答三步計算的應用題。 (6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數或未知數中間含有小數。d答案:根據計算的結果,先口答,逐步過渡到筆答。 ( 3 ) 解答加法應用題: a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。 b求比一個數多幾的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是多少。 (4 ) 解答減法應用題: a求剩余的應用題:從已知數中去掉一部分,求剩下的部分。 b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,或乙數比甲數少多少。 c求比一個數少幾的數的應用題:已知甲數是多少,乙數比甲數少多少,求乙數是多少。 (5 ) 解答乘法應用題: a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。 b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,求另一個數是多少。 ( 6) 解答除法應用題: a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平均分成幾份的,求每一份是多少。 b求一個數里包含幾個另一個數的應用題:已知一個數和每份是多少,求可以分成幾份。 C 求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是較小數的幾倍。 d已知一個數的幾倍是多少,求這個數的應用題。 (7)常見的數量關系: 總價= 單價數量 路程= 速度時間 工作總量=工作時間工效 總產量=單產量數量 3典型應用題 具有獨特的結構特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。 (1)平均數問題:平均數是等分除法的發(fā)展。 解題關鍵:在于確定總數量和與之相對應的總份數。 算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和247。數量的個數=算術平均數。 加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。 數量關系式 (部分平均數權數)的總和247。(權數的和)=加權平均數。 差額平均數:是把各個大于或小于標準數的部分之和被總份數均分,求的是標準數與各數相差之和的平均數。 數量關系式:(大數-小數)247。2=小數應得數 最大數與各數之差的和247??偡輸?最大數應給數 最大數與個數之差的和247??偡輸?最小數應得數。 例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。 分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 247。 =75 (千米) (2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。 根據求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。 根據球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。 一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!? 兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!? 正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結果的歸一問題。 反歸一問題:用等分除法求出“單一量”之后,再用除法計算結果的歸一問題。 解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然后以它為標準,根據題目的要求算出結果。數量關系式:單一量份數=總數量(正歸一) 總數量247。單一量=份數(反歸一) 例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天? 分析:必須先求出平均每天織布多少米,就是單一量。 693 0 247。( 477 4 247。 31 ) =45 (天) (3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。 特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。 數量關系式:單位數量單位個數247。另一個單位數量 = 另一個單位數量 單位數量單位個數247。另一個單位數量= 另一個單位數量。 例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
點擊復制文檔內容
教學教案相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1