freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx專(zhuān)題五:函數(shù)與導(dǎo)數(shù)(含近年高考試題)-文庫(kù)吧

2025-04-01 08:53 本頁(yè)面


【正文】 令F(x)=f(x)+g(x)=x3+ax2+x+1,F(xiàn)′(x)=3x2+2ax+,令F′(x)=0,得x1=-,x2=-,∵a0,∴x1x2,由F′(x)0得,x-或x-;由F′(x)0得,-x-.∴單調(diào)遞增區(qū)間是,;單調(diào)遞減區(qū)間為.[針對(duì)訓(xùn)練](2013重慶高考)設(shè)f(x) =a(x-5)2+6ln x,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸相交于點(diǎn)(0,6).(1)確定a的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.解:(1)因?yàn)閒(x)=a(x-5)2+6ln x,故f′(x)=2a(x-5)+.令x=1,得f(1)=16a,f′(1)=6-8a,所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y-16a=(6-8a)(x-1),由點(diǎn)(0,6)在切線上可得6-16a=8a-6,故a=.(2)由(1)知,f(x)=(x-5)2+6ln x(x0),f′(x)=x-5+=.令f′(x)=0,解得x1=2,x2=3.當(dāng)0x2或x3時(shí),f′(x)0,故f(x)在(0,2),(3,+∞)上為增函數(shù);當(dāng)2x3時(shí),f′(x)0,故f(x)在(2,3)上為減函數(shù).由此可知f(x)在x=2處取得極大值f(2)=+6ln 2,在x=3處取得極小值f(3)=2+6ln 3.考點(diǎn)三:已知函數(shù)的單調(diào)性求參數(shù)的范圍[典例] (2014山西診斷)已知函數(shù)f(x)=ln x-a2x2+ax(a∈R).(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.[解] (1)當(dāng)a=1時(shí),f(x)=ln x-x2+x,其定義域是(0,+∞),f′(x)=-2x+1=-,令f′(x)=0,即-=0,解得x=-或x=1.∵x0,∴x=1.當(dāng)0x1時(shí),f′(x)0;當(dāng)x1時(shí),f′(x)0.∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減.(2)顯然函數(shù)f(x)=ln x-a2x2+ax的定義域?yàn)?0,+∞),∴f′(x)=-2a2x+a==.①當(dāng)a=0時(shí),f′(x)=0,∴f(x)在區(qū)間(1,+∞)上為增函數(shù),不合題意.②當(dāng)a0時(shí),f′(x)≤0(x0)等價(jià)于(2ax+1)(ax-1)≥0(x0),即x≥,此時(shí)f(x)的單調(diào)遞減區(qū)間為.由得a≥1.③當(dāng)a0時(shí),f′(x)≤0(x0)等價(jià)于(2ax+1)(ax-1)≥0(x0),即x≥-,此時(shí)f(x)的單調(diào)遞減區(qū)間為.由得a≤-.綜上,實(shí)數(shù)a的取值范圍是∪[1,+∞).[針對(duì)訓(xùn)練](2014荊州質(zhì)檢)設(shè)函數(shù)f(x)=x3-x2+bx+c,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1.(1)求b,c的值;(2)若a0,求函數(shù)f(x)的單調(diào)區(qū)間;(3)設(shè)函數(shù)g(x)=f(x)+2x,且g(x)在區(qū)間(-2,-1)內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.解:(1)f′(x)=x2-ax+b,由題意得即(2)由(1)得,f′(x)=x2-ax=x(x-a)(a0),當(dāng)x∈(-∞,0)時(shí),f′(x)0,當(dāng)x∈(0,a)時(shí),f′(x)0,當(dāng)x∈(a,+∞)時(shí),f′(x)0.所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0),(a,+∞),單調(diào)遞減區(qū)間為(0,a).(3)g′(x)=x2-ax+2,依題意,存在x∈(-2,-1),使不等式g′(x)=x2-ax+20成立,即x∈(-2,-1)時(shí),amax=-2,當(dāng)且僅當(dāng)“x=”即x=-時(shí)等號(hào)成立,所以滿(mǎn)足要求的a的取值范圍是(-∞,-2). 考點(diǎn)四:用導(dǎo)數(shù)解決函數(shù)的極值問(wèn)題[典例] (2013福建高考節(jié)選)已知函數(shù)f(x)=x-1+(a∈R,e為自然對(duì)數(shù)的底數(shù)).(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;(2)求函數(shù)f(x)的極值.[解] (1)由f(x)=x-1+,得f′(x)=1-.又曲線y=f(x)在點(diǎn)(1,f(1))處
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1