freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)知識點(diǎn)總結(jié)最全版01303-文庫吧

2025-03-20 05:14 本頁面


【正文】 函數(shù)且叫做對數(shù)函數(shù)圖象0101定義域值域過定點(diǎn)圖象過定點(diǎn),即當(dāng)時(shí),.奇偶性非奇非偶單調(diào)性在上是增函數(shù)在上是減函數(shù)函數(shù)值的變化情況變化對 圖象的影響在第一象限內(nèi),越大圖象越靠低;在第四象限內(nèi),越大圖象越靠高.(6)反函數(shù)的概念設(shè)函數(shù)的定義域?yàn)?,值域?yàn)椋瑥氖阶又薪獬?,得式子.如果對于在中的任何一個(gè)值,通過式子,在中都有唯一確定的值和它對應(yīng),那么式子表示是的函數(shù),函數(shù)叫做函數(shù)的反函數(shù),記作,習(xí)慣上改寫成.(7)反函數(shù)的求法①確定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式中反解出;③將改寫成,并注明反函數(shù)的定義域.(8)反函數(shù)的性質(zhì) ①原函數(shù)與反函數(shù)的圖象關(guān)于直線對稱.②函數(shù)的定義域、值域分別是其反函數(shù)的值域、定義域.③若在原函數(shù)的圖象上,則在反函數(shù)的圖象上.④一般地,函數(shù)要有反函數(shù)則它必須為單調(diào)函數(shù).〖〗冪函數(shù)(1)冪函數(shù)的定義 一般地,函數(shù)叫做冪函數(shù),其中為自變量,是常數(shù).(2)冪函數(shù)的圖象(3)冪函數(shù)的性質(zhì)①圖象分布:冪函數(shù)圖象分布在第一、二、三象限,第四象限無圖象.冪函數(shù)是偶函數(shù)時(shí),圖象分布在第一、二象限(圖象關(guān)于軸對稱);是奇函數(shù)時(shí),圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對稱);是非奇非偶函數(shù)時(shí),圖象只分布在第一象限. ②過定點(diǎn):所有的冪函數(shù)在都有定義,并且圖象都通過點(diǎn). ③單調(diào)性:如果,則冪函數(shù)的圖象過原點(diǎn),并且在上為增函數(shù).如果,則冪函數(shù)的圖象在上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸.④奇偶性:當(dāng)為奇數(shù)時(shí),冪函數(shù)為奇函數(shù),當(dāng)為偶數(shù)時(shí),冪函數(shù)為偶函數(shù).當(dāng)(其中互質(zhì),和),若為奇數(shù)為奇數(shù)時(shí),則是奇函數(shù),若為奇數(shù)為偶數(shù)時(shí),則是偶函數(shù),若為偶數(shù)為奇數(shù)時(shí),則是非奇非偶函數(shù).⑤圖象特征:冪函數(shù),當(dāng)時(shí),若,其圖象在直線下方,若,其圖象在直線上方,當(dāng)時(shí),若,其圖象在直線上方,若,其圖象在直線下方.〖補(bǔ)充知識〗二次函數(shù)(1)二次函數(shù)解析式的三種形式①一般式:②頂點(diǎn)式:③兩根式:(2)求二次函數(shù)解析式的方法①已知三個(gè)點(diǎn)坐標(biāo)時(shí),宜用一般式.②已知拋物線的頂點(diǎn)坐標(biāo)或與對稱軸有關(guān)或與最大(?。┲涤嘘P(guān)時(shí),常使用頂點(diǎn)式.③若已知拋物線與軸有兩個(gè)交點(diǎn),且橫線坐標(biāo)已知時(shí),選用兩根式求更方便.(3)二次函數(shù)圖象的性質(zhì)①二次函數(shù)的圖象是一條拋物線,對稱軸方程為頂點(diǎn)坐標(biāo)是.②當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增,當(dāng)時(shí),;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減,當(dāng)時(shí),.③二次函數(shù)當(dāng)時(shí),圖象與軸有兩個(gè)交點(diǎn).(4)一元二次方程根的分布一元二次方程根的分布是二次函數(shù)中的重要內(nèi)容,這部分知識在初中代數(shù)中雖有所涉及,但尚不夠系統(tǒng)和完整,且解決的方法偏重于二次方程根的判別式和根與系數(shù)關(guān)系定理(韋達(dá)定理)的運(yùn)用,下面結(jié)合二次函數(shù)圖象的性質(zhì),系統(tǒng)地來分析一元二次方程實(shí)根的分布. 設(shè)一元二次方程的兩實(shí)根為,且.令,從以下四個(gè)方面來分析此類問題:①開口方向: ②對稱軸位置: ③判別式: ④端點(diǎn)函數(shù)值符號. ①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且僅有一個(gè)根x1(或x2)滿足k1<x1(或x2)<k2 f(k1)f(k2)0,并同時(shí)考慮f(k1)=0或f(k2)=0這兩種情況是否也符合 ⑥k1<x1<k2≤p1<x2<p2 此結(jié)論可直接由⑤推出. (5)二次函數(shù)在閉區(qū)間上的最值 設(shè)在區(qū)間上的最大值為,最小值為,令.(Ⅰ)當(dāng)時(shí)(開口向上)①若,則 ②若,則 ③若,則xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)①若,則 ②,則xy0aOabx2=pqf(p)f(q)(Ⅱ)當(dāng)時(shí)(開口向下)①若,則 ②若,則 ③若,則xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)①若,則 ②,則.xy0aOabx2=pqf(p)f(q)xy0aOabx2=pqf(p)f(q)第三章 函數(shù)的應(yīng)用一、方程的根與函數(shù)的零點(diǎn)函數(shù)零點(diǎn)的概念:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).函數(shù)零點(diǎn)的求法:求函數(shù)的零點(diǎn): (代數(shù)法)求方程的實(shí)數(shù)根; (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).二次函數(shù)的零點(diǎn):二次函數(shù).1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).高中數(shù)學(xué) 必修2知識點(diǎn)第一章 空間幾何體、錐、臺、球的結(jié)構(gòu)特征(1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等表示:用各頂點(diǎn)字母,如五棱錐幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺:定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等表示:用各頂點(diǎn)字母,如五棱臺幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。(6)圓臺:定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。1 三視圖: 正視圖:從前往后 側(cè)視圖:從左往右 俯視圖:從上往下2 畫三視圖的原則: 長對齊、高對齊、寬相等3直觀圖:斜二測畫法4斜二測畫法的步驟:(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;(2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;(3).畫法要寫好。5 用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖 空間幾何體的表面積與體積(一 )空間幾何體的表面積1棱柱、棱錐的表面積: 各個(gè)面面積之和2 圓柱的表面積 3 圓錐的表面積4 圓臺的表面積 5 球的表面積(二)空間幾何體的體積1柱體的體積 2錐體的體積 3臺體的體積 4球體的體積 第二章 直線與平面的位置關(guān)系、直線、平面之間的位置關(guān)系1 平面含義:平面是無限延展的2 平面的畫法及表示(1)平面的畫法:水平放置的平面通常畫成一個(gè)平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對的兩個(gè)頂點(diǎn)的大寫字母來表示,如平面AC、平面ABCD等。3 三個(gè)公理:DCBAα(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)符號表示為LAαA∈L B∈L = L αA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)CBAα(2)公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。符號表示為:A、B、C三點(diǎn)不共線 = 有且只有一個(gè)平面α,使A∈α、B∈α、C∈α。公理2作用:確定一個(gè)平面的依據(jù)。(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。PαLβ符號表示為:P∈α∩β =α∩β=L,且P∈L公理3作用:判定兩個(gè)平面是否相交的依據(jù) 空間中直線與直線之間的位置關(guān)系1 空間的兩條直線有如下三種關(guān)系:共面直線 相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。2 公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設(shè)a、b、c是三條直線=a∥ca∥bc∥b強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。3 等角定理:空間中如果兩個(gè)角的兩邊分別對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)4 注意點(diǎn):① a39。與b39。所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為簡便,點(diǎn)O一般取在兩直線中的一條上;② 兩條異面直線所成的角θ∈(0, );③ 當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;④ 兩條直線互相垂直,有共面垂直與異面垂直兩種情形;⑤ 計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。 — 空間中直線與平面、平面與平面之間的位置關(guān)系直線與平面有三種位置關(guān)系:(1)直線在平面內(nèi) —— 有無數(shù)個(gè)公共點(diǎn)(2)直線與平面相交 —— 有且只有一個(gè)公共點(diǎn)(3)直線在平面平行 —— 沒有公共點(diǎn)指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用a α來表示a α a∩α=A a∥α、平面平行的判定及其性質(zhì) 直線與平面平行的判定直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號表示:a αb β = a∥αa∥b 平面與平面平行的判定兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。符號表示:a βb βa∩b = P β∥αa∥αb∥α判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線的兩個(gè)平面平行。 — 、平面與平面平行的性質(zhì)定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號表示:a∥αa β a∥bα∩β= b作用:利用該定理可解決直線間的平行問題。定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。符號表示:α∥βα∩γ= a a∥b β∩γ= b作用:可以由平面與平面平行得出直線與直線平行、平面垂直的判定及其性質(zhì)定義如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖,直線與平面垂
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1