【總結(jié)】?數(shù)學(xué)是研究?jī)蓚€(gè)量(向量)的關(guān)系?y=f(x)?這里x,y是數(shù)據(jù),f是已知的關(guān)系,即函數(shù).?函數(shù)概念推廣,x,y是不確定性數(shù)據(jù),來(lái)自某一分布,f是未知的,現(xiàn)在要確定這種不確定關(guān)系,就要用到概率統(tǒng)計(jì).概率論復(fù)習(xí)?隨機(jī)變量概念的產(chǎn)生是概率論發(fā)展史上的重大事件.引入隨機(jī)變量后,對(duì)
2024-11-03 23:17
【總結(jié)】第七章假設(shè)檢驗(yàn)假設(shè)檢驗(yàn)是統(tǒng)計(jì)推斷的另一種形式,根據(jù)樣本所提供的信息,推斷事先給出的關(guān)于未知的總體的一個(gè)假設(shè)是否合理,這就是假設(shè)檢驗(yàn)?!?·1假設(shè)檢驗(yàn)的基本思想和概念例1工廠中自動(dòng)打包機(jī)打包,每包重量每包重應(yīng)為50kg,由
2025-01-19 15:19
【總結(jié)】概率論與數(shù)理統(tǒng)計(jì)(第四版)浙江大學(xué)盛驟2022/3/131概率論與數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象數(shù)量規(guī)律的一門學(xué)科。23?第一章概率論的基本概念?隨機(jī)試驗(yàn)?樣本空間?概率和頻率?等可能概型(古典概型)?條件概率?獨(dú)立性?第二章
2025-02-19 00:22
【總結(jié)】第4章隨機(jī)變量的數(shù)字特征數(shù)學(xué)期望協(xié)方差與相關(guān)系數(shù)矩方差數(shù)學(xué)期望(均值)的定義即一個(gè)隨機(jī)變量的平均取值,是它所有可能取值的加權(quán)平均,權(quán)是這些可能值相應(yīng)的概率。數(shù)字特征是由隨機(jī)變量決定的一些常數(shù),期望與方差是其中最重要的兩個(gè)特征,它們只能刻化隨機(jī)變
2024-10-19 00:45
【總結(jié)】概率論與數(shù)理統(tǒng)計(jì)第六講浙江傳媒學(xué)院電子信息學(xué)院孫永平第三章隨機(jī)向量有些隨機(jī)現(xiàn)象只用一個(gè)隨機(jī)變量來(lái)描述是不夠的,需要用幾個(gè)隨機(jī)變量來(lái)同時(shí)描述。3.導(dǎo)彈在空中位置——坐標(biāo)(X,Y,Z)。1.某人體檢數(shù)據(jù)——血壓X和心律Y;例如:2.鋼的基本指標(biāo)——含碳量X,含硫
2025-01-19 14:49
【總結(jié)】概率論與數(shù)理統(tǒng)計(jì)本學(xué)期要求?1、考慮大家的基礎(chǔ),不再一味的追求難度,前提保證大家過(guò)!?2、每位同學(xué)準(zhǔn)備一個(gè)作業(yè)本,給大家布置的作業(yè)上課前全部交上來(lái)!?3、對(duì)大家不定期的進(jìn)行課堂點(diǎn)名!?4、以上措施希望大家認(rèn)真對(duì)待,順利通過(guò)考試才是王道!?5、對(duì)于大家的作業(yè)和到課情況,會(huì)定期呈報(bào)年級(jí)主任!?6、希望大家相
【總結(jié)】一、重點(diǎn)與難點(diǎn)二、主要內(nèi)容三、典型例題第二章隨機(jī)變量及其分布習(xí)題課一、重點(diǎn)與難點(diǎn)(0-1)分布、二項(xiàng)分布和泊松分布的分布律正態(tài)分布、均勻分布和指數(shù)分布的分布函數(shù)、密度函數(shù)及有關(guān)區(qū)間概率的計(jì)算連續(xù)型隨機(jī)變量的概率密度函數(shù)的求法二、主要內(nèi)容隨機(jī)變量離散型
【總結(jié)】《概率論與數(shù)理統(tǒng)計(jì)》習(xí)題集第三章多維隨機(jī)變量及分布系專業(yè)班姓名學(xué)號(hào)習(xí)題課一.選擇題1.設(shè)隨機(jī)變量和有相同的概率分布則()(A)(B)(C)(D)*2.設(shè)和相互獨(dú)立,且都服從區(qū)間上的
2025-08-21 15:16
【總結(jié)】——你了解嗎??在平面上畫(huà)有等距為a的一些平行線,今向此平面任意投一長(zhǎng)為b(ba)的針,試求此針與平行線相交的概率.?相交的概率p=試驗(yàn)者年份投擲次數(shù)相交次數(shù)Π的近似值針長(zhǎng)Wolf185050002532Smith185532041218Deman
2025-08-01 12:40
【總結(jié)】1(二十一)開(kāi)始王柱2第七章續(xù)特殊的區(qū)間估計(jì)3()大樣本情形下總體均值的區(qū)間估計(jì)由概率論中的中心極限定理可知,不論所考察的總體分布如何,只要樣本容量n足夠大,樣本均值近似地服從正態(tài)分布。即設(shè)總體X的分布是任意的,均值和方差都是未知的。用樣本
2025-04-29 12:02
【總結(jié)】3)Poisson分布如果隨機(jī)變量X的分布律為?????,,,210!????kekkXPk????為常數(shù)其中0??則稱隨機(jī)變量X服從參數(shù)為λ的Poisson分布.第二章隨機(jī)變量及其分布§2離散型隨機(jī)變量返回主目錄分布律的驗(yàn)證⑴由于
2024-10-04 18:30
【總結(jié)】總復(fù)習(xí)公式第一章ABBABA包含于且包含于:相等關(guān)系?同時(shí)發(fā)生:積事件BABA,?中至少有一個(gè)發(fā)生和:和事件BABA?發(fā)生發(fā)生必然導(dǎo)致:包含關(guān)系BABA?AAAA記為的對(duì)立事件為:對(duì)立事件,??????AAAA?BAABBABA????:對(duì)偶律BBAAABBA????則吸收律,:不發(fā)生發(fā)生但:或差事件
2025-08-05 08:56
【總結(jié)】1乘法公式2由條件概率的定義:即若P(B)0,則P(AB)=P(B)P(A|B)(2))()()|(BPABPBAP?而P(AB)=P(BA)二、乘法公式若已知P(B),P(A|B)時(shí),可以反求P(AB).將A、B的位置對(duì)調(diào),有故若P(
2025-07-23 17:03
【總結(jié)】1)第三章隨機(jī)變量及其分布§5多維隨機(jī)變量函數(shù)的分布3)在實(shí)際問(wèn)題中,常常會(huì)遇到需要求隨機(jī)變量函數(shù)的分布問(wèn)題。例如:在下列系統(tǒng)中,每個(gè)元件的壽命分別為隨機(jī)變量X,Y,它們相互獨(dú)立同分布。我們想知道系統(tǒng)壽命Z的分布。),min(YXZ?),max(YXZ?YXZ??這就是求
2024-10-04 18:23
【總結(jié)】?概率密度及其性質(zhì)?指數(shù)分布?均勻分布?正態(tài)分布與標(biāo)準(zhǔn)正態(tài)分布返回主目錄§4連續(xù)型隨機(jī)變量的概率密度第二章隨機(jī)變量及其分布一、連續(xù)型隨機(jī)變量的概念與性質(zhì)1)定義如果對(duì)于隨機(jī)變量X的分布函數(shù)F(x),存在非負(fù)函數(shù)f(x),使得對(duì)于任意實(shí)數(shù)x,有
2024-10-05 00:15