【總結(jié)】排列,組合問(wèn)題的解答策略第四節(jié)相鄰問(wèn)題捆綁法?例13:6名同學(xué)排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個(gè)??例15:計(jì)劃在某畫(huà)廊展開(kāi)10幅不同的畫(huà),
2024-11-10 22:56
【總結(jié)】 公考排列組合問(wèn)題的解題思路及方法 排列組合問(wèn)題是公務(wù)員考試當(dāng)中經(jīng)??疾斓囊环N題型,也是很多考生理解的不是很清晰的一類(lèi)題型,所以通過(guò)幾篇文章詳細(xì)分析一下排列組合問(wèn)題的解題思路和解題方法,希望對(duì)考生...
2025-09-22 09:30
【總結(jié)】;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力合問(wèn)題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類(lèi)辦法,在第1類(lèi)辦法中有m1種不同的方法,在第2類(lèi)辦法中有m2種不同的方法,…,在第n類(lèi)辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-09 13:22
【總結(jié)】WORD格式可編輯排列組合方法篇1、兩個(gè)原理及區(qū)別(加法原理)(乘法原理)2、排列數(shù)公式排列數(shù)公式==.(,∈N*,且).注:規(guī)定.排列恒等式(1);(2).會(huì)推以下恒等式(1);(2);(3);(4)
2025-08-05 07:38
【總結(jié)】排列組合專(zhuān)題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題.菁優(yōu)網(wǎng)版權(quán)所有專(zhuān)題:應(yīng)用題;排列組合.分析:分類(lèi)討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題選修2-3排列組合專(zhuān)題計(jì)劃學(xué)時(shí)1學(xué)案作者楊得生學(xué)案審核張愛(ài)敏高考目標(biāo)掌握排列、組合問(wèn)題的解題策略三維目標(biāo)一、知識(shí)與技能。?;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力??.二、過(guò)程與方法通過(guò)問(wèn)題的探究,體會(huì)知識(shí)的類(lèi)比遷移。以
2025-08-05 06:55
【總結(jié)】排列組合應(yīng)用題的解題技巧教學(xué)目的教學(xué)過(guò)程課堂練習(xí)課堂小結(jié)方法;用題的解題技巧;列組合問(wèn)題.一復(fù)習(xí)引入二新課講授排列組合問(wèn)題在實(shí)際應(yīng)用中是非常廣泛的,并且在實(shí)際中的解題方法也是比較復(fù)雜的,下面就通過(guò)一些實(shí)例來(lái)總結(jié)實(shí)際應(yīng)用中的解題技巧.例題1
【總結(jié)】排列組合應(yīng)用題解法綜述(目錄)基本概念和考點(diǎn)合理分類(lèi)和準(zhǔn)確分步特殊元素和特殊位置問(wèn)題相鄰相間問(wèn)題定序問(wèn)題分房問(wèn)題環(huán)排、多排問(wèn)題小集團(tuán)問(wèn)題先選后排問(wèn)題平均分組問(wèn)題構(gòu)造模型策略實(shí)驗(yàn)法(枚舉法)其它特殊方法排列組合應(yīng)用題解法綜述計(jì)數(shù)問(wèn)題中排列組合問(wèn)題是最常見(jiàn)的,由于
2025-08-15 23:21
【總結(jié)】解排列組合應(yīng)用題的策略排列組合問(wèn)題是高考的必考題,它聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,不易掌握,實(shí)踐證明,掌握題型和解題方法,識(shí)別模式,熟練運(yùn)用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.1.相鄰問(wèn)題捆綁法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.例1.五人并排站成一排,如果必須
2025-06-07 22:44
【總結(jié)】,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有多少不同的裝法.解:(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有種方法,根據(jù)分步計(jì)數(shù)原理裝球的方法共有解決排列組合混合問(wèn)題,?練習(xí)題:一個(gè)班有6名戰(zhàn)士,其中正副班長(zhǎng)各1人現(xiàn)從中選4人完成四種不同的任務(wù),每人完成一種任務(wù),且正副班長(zhǎng)有且只有1人參加,則不同的選法有192種,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù)其中
2025-08-05 07:35
【總結(jié)】命題角度1正確運(yùn)用兩個(gè)基本原理1.(典型例題)已知集合A=B={1,2,3,4,5,6,7},映射f:A→B滿(mǎn)足f(1)f(2)f(3)f(4),則這樣的映射f的個(gè)數(shù)為()A.C47A33B.C47C.77D.C7473[考場(chǎng)錯(cuò)解]∵f(1)f(2)f(3)f(4
【總結(jié)】,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有多少不同的裝法.解:(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有種方法,根據(jù)分步計(jì)數(shù)原理裝球的方法共有解決排列組合混合問(wèn)題,?練習(xí)題:一個(gè)班有6名戰(zhàn)士,其中正副班長(zhǎng)各1人現(xiàn)從中選4人完成四種不同的任務(wù),每人完成一種任務(wù),且正副班長(zhǎng)有且只有1人參加,則不同的選法有192種,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù)其中恰有
2025-03-25 02:37
【總結(jié)】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2025-08-15 23:43
【總結(jié)】.公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如????9!=9*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合綜合問(wèn)題教學(xué)目標(biāo)通過(guò)教學(xué),學(xué)生在進(jìn)一步加深對(duì)排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問(wèn)題和解決問(wèn)題的能力,學(xué)會(huì)分類(lèi)討論的思想.教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):排列、組合綜合題的解法.難點(diǎn):正確的分類(lèi)、分步.教學(xué)用具投影儀.教學(xué)過(guò)程設(shè)計(jì)(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問(wèn)題和組