【正文】
2(n+1)個,故插值多項(xiàng)式最高次數(shù)為 2n+1。 ? 對二重密切 Hermite插值 ? ? niii xfxf 0)(),( ??給定4 數(shù) 學(xué) 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 10000100001000010000????????????????????????nxxnnndxddxdxxgghh5 數(shù) 學(xué) 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS ? 整個構(gòu)造步驟如下: 首先確定多項(xiàng)式的最高項(xiàng)次數(shù),而函數(shù)空間的維數(shù) =最高項(xiàng)次數(shù) +1 假設(shè)一組基函數(shù),列出插值多項(xiàng)式 列出基函數(shù)滿足的公式(畫表),求基函數(shù) 稱為 構(gòu)造基函數(shù)方法 6 數(shù) 學(xué) 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS ? 給定一階導(dǎo)數(shù)值的差商表 )(, 00 xfx)(, 11 xfx)(, 22 xfx?)(, nn xfx],[ 10 xxf],[ 11 xxf],[ 1 nn xxf ],[ 110 xxxf],[ 11 nnn xxxf ? ?nixfxxf iii ,0),(],[ ??????)(, nn xfx ],[ nn xxf ],[ 1 nnn xxxf ],[ 00 nn xxxxf ??)(, 00 xfx ],[ 00 xxf],[ 100 xxxf)(, 11 xfx? ?],[ 1100 xxxxf????7 數(shù) 學(xué) 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS ? 差商型二重密切 Hermite插值公式 ? ?+ ++++?1020020100000012 )()(],[)](,[)](,[)()(nininnn xxxxxxxxfxxxxxfxxxxfxfxH ??8 數(shù) 學(xué) 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 誤差分析 類似 Lagrange插值的分析方法 000000110110( 1 ) ( 1 )0( 1 )0( ) ( ) ( ){ , , } ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( 1 ) !()( ) (( 1 ) !nnnnnnkknkknk k n k k nnk k nnR x f x H xx x R xR x k x x x x xt f t H t k x t x t xf k x k k nfRxk k n?? ? ??+++++ + + + + + + ++ + + +?? ? ? ? ? + + + +??+ + + +易 知 , 為 若 干 重 根記0110) ( )nkknx x x x++9 數(shù) 學(xué) 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 二重密切 Hermite插值誤差 ( 2 2 )220()( ) ( ) ( )( 2 2 ) !nnfR x x x x xn?+? +)(即 1?ik10 數(shù) 學(xué) 系 University of Science and Tec