【總結(jié)】的簡單幾何性質(zhì)(2)復習:1、拋物線的幾何性質(zhì)圖形方程焦點準線范圍頂點對稱軸elFyxOlFyxOlFyxOlFyxOy2=2px(p0)y2=-2px(p0)x2=
2025-11-09 11:25
【總結(jié)】拋物線焦點弦經(jīng)典性質(zhì)通過焦點的直線,與拋物線相交于兩點,連接這兩點的線段叫做拋物線的焦點弦。xOyFA焦點弦),(11yxB),(22yx過拋物線pxy22?(p0)的焦點F作一條直線L和此拋物線相交于A),(11yx、B),(22yx兩點
2025-08-05 07:24
【總結(jié)】第二章圓錐曲線與方程拋物線的簡單幾何性質(zhì)xyo準線方程焦點坐標標準方程圖形xyoFy2=2px(p0)x2=2py(p0)x2=-2py(p0)xyoFxyoFxyoFy
2025-08-05 07:31
【總結(jié)】1、拋物線的定義一.復習回顧··MDlFl平面內(nèi)與一個定點和一條定直線(F不在l上)的距離相等的點的軌跡叫做拋物線FF定點叫做拋物線的焦點定直線叫做拋物線的準線l設點M的坐標為(x,y)由定義可知,化簡得y2=2
2025-05-12 13:59
【總結(jié)】陳濤拋物線的簡單幾何性質(zhì)1、拋物線的定義標準方程y=p/2焦點準線y2=2px(p0)y2=-2px(p0)x2=2py(p0)x2=-2py(p0)(p/2,0)(0,p/2)(0,-p/2)圖形X=-p/2X=p/2y
2025-10-31 03:31
【總結(jié)】拋物線的性質(zhì)上海市控江中學劉燦文1、拋物線的定義;2、四種標準方程形式;3、拋物線方程)0(22??ppxy中參數(shù)p的含義。一、復習回顧我們根據(jù)拋物線的標準方程)0(22??ppxy來研究拋物線的性質(zhì)。二、講授新課;作文班加盟
2025-08-16 01:47
【總結(jié)】拋物線的幾何性質(zhì)前面我們已學過橢圓與雙曲線的幾何性質(zhì),它們都是通過標準方程的形式研究的,現(xiàn)在請大家想想拋物線的標準方程、圖形、焦點及準線是什么?一、復習回顧:圖形方程焦點準線lFyxOlFyxOlFyxO
2025-11-09 08:56
【總結(jié)】拋物線的簡單幾何性質(zhì)習題一【同步達綱練習】A級一、選擇題,則過A且與l相切圓的圓心軌跡是() =10x的焦點到準線的距離是() ,x軸為對稱軸的拋物線的焦點在直線2x-4y+11=0上,則此拋物線的方程是()=11x =-11x =22x =-22x=2px(
2025-06-24 21:23
【總結(jié)】拋物線的幾何性質(zhì)2復習:1拋物線的幾何性質(zhì)圖形方程焦點準線范圍頂點對稱軸elFyxOlFyxOlFyxOlFyxOy2=2px(p0)y2=-2px(p0)x2=2py
【總結(jié)】中國領先的中小學教育品牌精銳教育學科教師輔導講義講義編號年級:高二輔導科目:數(shù)學課時數(shù):3
2025-06-25 07:09
【總結(jié)】高二數(shù)學組集體備課材料備課人:李德輝時間:2012-11-15三維目標:1.能敘述拋物線的簡單幾何性質(zhì),如范圍、對稱性、頂點和離心率等。2.能用拋物線的簡單幾何性質(zhì)解決一些簡單問題。3.能在對拋物線幾何性質(zhì)的討論中,體會數(shù)形結(jié)合的思想與轉(zhuǎn)化。教學重點:拋物線的簡單幾何性質(zhì)及初步運用。教學難點:拋物線的簡單幾何性質(zhì)及初步運用。教
2025-06-30 22:24
【總結(jié)】新課標人教版課件系列《高中數(shù)學》選修2-1《拋物線的幾何意義》教學目標?1.掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì);?2.能根據(jù)拋物線的幾何性質(zhì)對拋物線方程進行討論,在此基礎上列表、描點、畫拋物線圖形;?3.在對拋物線幾何性質(zhì)的討論中,注意數(shù)與形的結(jié)合與轉(zhuǎn)化?教學重點:拋物線的
2025-11-03 17:11
【總結(jié)】掌握拋物線的定義、標準方程、幾何圖形及簡單性質(zhì).第8課時拋物線?1.高考對拋物線的考查時常出現(xiàn),主要以拋物線定義的靈活運用、求拋物?線的標準方程、拋物線的幾何性質(zhì)及直線與拋物線的位置關系為主.?2.題目類型有求拋物線的方程,求焦點的坐標,求拋物線的參數(shù)值或有關?參數(shù)的取值范圍等,對拋
2025-09-20 00:45
【總結(jié)】江蘇省漣水縣第一中學高中數(shù)學拋物線的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:掌握拋物線的幾何性質(zhì),能應用拋物線的幾何性質(zhì)解決問題.教學重點、難點:拋物線的幾何性質(zhì).教學方法:自主探究.課堂結(jié)構(gòu):一、復習回顧拋物線的標準方程有哪些?二、自主探究探究1類比橢圓、雙曲線的幾何性質(zhì),拋物線又會有怎樣的幾
2025-11-11 00:31
【總結(jié)】《拋物線的幾何意義》教學目標?1.掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì);?2.能根據(jù)拋物線的幾何性質(zhì)對拋物線方程進行討論,在此基礎上列表、描點、畫拋物線圖形;?3.在對拋物線幾何性質(zhì)的討論中,注意數(shù)與形的結(jié)合與轉(zhuǎn)化?教學重點:拋物線的幾何性質(zhì)及其運用?教學難點:拋物線幾何性質(zhì)的運用結(jié)合拋
2025-11-01 07:30