【總結(jié)】圓的對稱性教學過程(一)明確目標同學們請觀察老師手中的圓形圖片.AB為⊙O的直徑.①我把⊙O沿著AB折疊,兩旁部分互相重合,我們知道這個圓是一個軸對移圖形.②若把⊙O沿著圓心O旋轉(zhuǎn)180°時;兩旁部分互相重合,這時我們可以發(fā)現(xiàn)圓又是一個中心對稱圖形.由學生總結(jié)圓不僅是軸對稱圖形,圓也是中心對稱圖形.若一個
2024-11-19 20:34
【總結(jié)】課時第三章第二節(jié)第一課時課題課型新授課時間2013年2月26日周二節(jié)次第三節(jié)授課人教學目標1、通過手腦結(jié)合,充分掌握圓旳軸對稱性;2、運用探索、推理,充分把握圓中旳垂徑定理及其逆定理;3、拓展思維,與實踐相結(jié)合,運用垂徑定理及其逆定理進行有關(guān)旳計算和證明.重點垂徑定理及其逆定理難點垂徑定理及
2025-08-05 06:41
【總結(jié)】圓的對稱性教學目標:(1)知識與能力:通過本課的學習,學生在知識上要了解圓的對稱性及垂徑定理,在能力上要學會從表象中抽象出本質(zhì)規(guī)律,提高邏輯思維能力與推理能力。(2)過程與方法:在教學過程中,要讓學生親自動手去做去體會,并讓他們相互交流,然后根據(jù)實際情況加以啟發(fā),引導讓他們自己去總結(jié)出規(guī)律。(3)情感、態(tài)度與價值觀:A、本課
2024-11-19 08:37
【總結(jié)】第1題.若圓的半徑為3,圓中一條弦為25,則此弦中點到弦所對劣弧的中點的距離為.答案:1第2題.若AB是O的直徑,弦CDAB⊥于E,16AE?,4BE?,則CD?,AC?.答案:1685第3題.已知在O中,CD為直徑,AB是弦,ABCD⊥于M,15
2024-11-15 19:37
【總結(jié)】例3:⑴如圖,順次連結(jié)⊙O的兩條直徑AC和BD的端點,所得的四邊形是什么特殊四邊形?ODCBA⑵如果要把直徑為30cm的圓柱形原木鋸成一根橫截面為正方形的木材,并使截面盡可能地大,應怎樣鋸?最大橫截面面積是多少?⑶如果這根原木長15m,問鋸出地木材的體積為多少m3(樹皮等損耗略去不計)?ODC
2024-11-12 18:26
【總結(jié)】課題:圓的軸對稱性(1)教學目標1.使學生理解圓的軸對稱性.2.掌握垂徑定理.3.學會運用垂徑定理解決有關(guān)弦、弧、弦心距以及半徑之間的證明和計算問題.教學重點垂徑定理是圓的軸對稱性的重要體現(xiàn),是今后解決有關(guān)計算、證明和作圖問題的重要依據(jù),它有著廣泛的應用,因此,本節(jié)課的教學重點是:垂徑定理及其應用.教學難點
2024-11-20 02:16
【總結(jié)】1、圓是對稱圖形嗎?它有哪些對稱性?回顧:圓既是軸對稱圖形,又是中心對稱圖形,也是旋轉(zhuǎn)對稱圖形。旋轉(zhuǎn)角度可以是任意度數(shù)。對稱軸是過圓心任意一條直線。2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心和旋轉(zhuǎn)中心在哪里?將圖中的扇形AOB繞點O逆時針旋轉(zhuǎn)某個角度。在得到的圖形中,同學們可以通
2024-12-01 00:45
【總結(jié)】圓的對稱性第二課時九年級數(shù)下學期北師大版1、圓是對稱圖形嗎?它有哪些對稱性。回顧:圓既是軸對稱圖形,又是中心對稱圖形.2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心在哪里?OO'兩個圓有什么特點?●O用旋轉(zhuǎn)的方法可以得到:一個圓繞著它的圓
2024-11-06 23:20
【總結(jié)】第2章圓圓的對稱性圓是生活中常見的圖形,許多物體都給我們以圓的形象.圓是平面內(nèi)到一定點的距離等于定長的所有點組成的圖形.·定長叫作半徑.這個定點叫作圓心.OA圓也可以看成是平面內(nèi)一個動點繞一個定點旋轉(zhuǎn)一周所形成的圖形,定點叫作圓心.以點O為圓心的圓叫作圓O,記作⊙
2024-12-08 02:59
【總結(jié)】九年級數(shù)學(上)第三章圓圓的對稱性?定理垂直于弦的直徑平分弦,并且平分弦所的兩條弧.?老師提示:?此定理是圓中一個重要的結(jié)論,三種語言要相互轉(zhuǎn)化,形成整體,才能運用自如.想一想1駛向勝利的彼岸●OABCDM└CD⊥AB,如
2024-12-08 08:37
【總結(jié)】義務教育課程標準實驗教科書浙江版《數(shù)學》九年級上冊定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.●OABCDM└CD⊥AB,如圖∵CD是直徑,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.條件①CD為直徑②CD⊥AB
2024-11-27 23:42
【總結(jié)】創(chuàng)設(shè)情境,引入新課復習提問:(2)正三角形是軸對稱性圖形嗎?(1)什么是軸對稱圖形(3)圓是否為軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?如果一個圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個圖形就是軸對稱圖形。有幾條對稱軸?是3在白紙上任意作一個圓和這個
【總結(jié)】人教版六年級上冊數(shù)學《圓的對稱性》教案第一篇:人教版六年級上冊數(shù)學《圓的對稱性》教案人教版六年級上冊數(shù)學《圓的對稱性》教案楊曉莉教學內(nèi)容:教科書59頁例題3做一做教學目標:1、知識與技能:(1)初步認識軸對稱圖形,知道軸對稱的含義;(2)會判斷哪些圖形是軸對稱圖形并能找出軸對稱圖形的對稱軸。2、過程與方法:(1
2025-03-17 14:41
【總結(jié)】第三章圓2.圓的對稱性(二)一、學生知識狀況分析學生的知識技能基礎(chǔ):學生在七、八年級已經(jīng)學習過軸對稱圖形以及中心對稱圖形的有關(guān)概念及性質(zhì),以及本節(jié)定理的證明要用到三角形全等的知識等。在上節(jié)課中,學生學習了圓的軸對稱性,并利用軸對稱性研究了垂徑定理及其逆定理。學生具備一定的研究圖形的方法,基本掌握探究問題的途徑,具備合情推理的能力,
2024-12-09 08:13
【總結(jié)】圓的對稱性預習案一、預習目標及范圍:,熟練運用垂徑定理。(難點)。(重點)。二、預習要點??三、預習檢測,⊙O的直徑CD垂直弦AB于點E,且CE=2,DE=8,則AB的長為()A.2B.4C.6
2024-12-09 02:20