【總結(jié)】精品資源第01講平面向量●網(wǎng)絡(luò)體系總覽●考點目標定位,掌握向量的幾何表示,了解共線向量的概念...,理解平面向量的坐標的概念,掌握平面向量的坐標運算.●復(fù)習(xí)方略指南向量是數(shù)學(xué)中的重要概念,它廣泛應(yīng)用于生產(chǎn)實踐和科學(xué)研究中,,主要考查平面向量的加減運算、平面向量的坐標表示、平面向量的數(shù)量積、圖形的平移等基本概念、、使用,“平面向量”將會成為命題
2025-06-29 16:19
【總結(jié)】§3.空間向量的數(shù)乘運算知識點一空間向量的運算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對角線BC′上的34分點,設(shè)'MNABADAA???
2024-12-08 01:49
【總結(jié)】精品資源普通高中課程標準實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座8)—空間幾何體一.課標要求:1.利用實物模型、計算機軟件觀察大量空間圖形,認識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu);2.能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如:
2025-06-29 17:08
【總結(jié)】第6講空間向量及其運算一、選擇題1.在下列命題中:①若向量a,b共線,則向量a,b所在的直線平行;②若向量a,b所在的直線為異面直線,則向量a,b一定不共面;③若三個向量a,b,c兩兩共面,則向量a,b,c,共面;④已知空間的三個向量a,b,c,則對于空間的任意一個向量p總存在實數(shù)x
2024-11-06 04:18
【總結(jié)】坐標表示1.空間向量的基本定理:2.平面向量的坐標表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 12:14
【總結(jié)】空間向量的坐標運算——空間直角坐標系.空間向量的直角坐標運算.單位正交基底,空間直角坐標系,向量的坐標xyzO(x,y,z)ijkPP’OP=OP’+P’P=Xi+yj+zk啟示:空間向量OP=(x,y,z)Xiyjzk則),(2211
2025-08-16 01:22
【總結(jié)】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
【總結(jié)】數(shù)乘運算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運算擴展到了空間.平面向量空間向量加法減法運算加法:三角形法則或平行四邊形法則減法:三角形法則運算律加法交換律abba???加法結(jié)合律:()()ab
【總結(jié)】§3.空間向量運算的坐標表示知識點一空間向量的坐標運算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-20 03:14
【總結(jié)】§3.空間向量的數(shù)量積運算知識點一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
【總結(jié)】抓住2個考點突破3個考向揭秘3年高考【2022年高考浙江會這樣考】1.考查判定線面的位置關(guān)系.2.以多面體為載體,考查線面平行、面面平行的判定或探究.第4講直線、平面平行的判定及其性質(zhì)抓住2個考點突破3個考向揭秘3年高考考點梳理1.直線與平面平行(1)判定定理:平面外一條
2025-01-06 14:53
【總結(jié)】2022年1月4日12時38分(共31張)1高等數(shù)學(xué)(下冊)主講:陳銀輝注意:?1.課堂必須保持安靜,有問題請舉手。?2.上課嚴禁玩手機,睡覺。?。?,嚴禁抄襲;?作業(yè)書寫須工整,不得把作業(yè)本當(dāng)草稿本。?,不得私下發(fā)牢騷擾亂課堂。2022年1月4日12時
2024-12-08 00:43
【總結(jié)】§3.空間向量的正交分解及其坐標表示知識點一向量基底的判斷已知向量{a,b,c}是空間的一個基底,那么向量a+b,a-b,c能構(gòu)成空間的一個基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個基底.假設(shè)a+b,a-b,c共面,則存在x,
【總結(jié)】空間向量的坐標運算一.問題情境四.課堂練習(xí)五.小結(jié)作業(yè)二.學(xué)生活動三.?dāng)?shù)學(xué)應(yīng)用蘇教版選修1-1海安縣實驗中學(xué)高二數(shù)學(xué)備課組1.空間向量的基本定理:2.平面向量的坐標表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標
2024-11-10 01:37
【總結(jié)】一、平面向量復(fù)習(xí)⒈定義:既有大小又有方向的量叫向量.幾何表示法:用有向線段表示;字母表示法:用字母a、b等或者用有向線段的起點與終點字母表示.AB相等的向量:長度相等且方向相同的向量.ABCD⒉平面向量的加減法運算⑴向量的加法:ab平行四邊形
2024-11-18 11:25