【總結(jié)】第三章行列式線性方程組和行列式排列n階行列式子式和代數(shù)余子式行列式依行(列)展開克拉默法則課外學(xué)習(xí)6:行列式計算方法課外學(xué)習(xí)7:q_行列式及其性質(zhì)能夠作出數(shù)學(xué)發(fā)現(xiàn)的人,是具有感受數(shù)學(xué)中的秩序、和諧、對稱、整齊和神秘美等能力的人,而且只限于這種人。――龐加萊(Poincare
2025-01-15 16:55
【總結(jié)】把個不同的元素排成一列,叫做這個元素的全排列(或排列).nn個不同的元素的所有排列的種數(shù)用表示,且.nnP!nPn?1全排列逆序數(shù)為奇數(shù)的排列稱為奇排列,逆序數(shù)為偶數(shù)的排列稱為偶排列.在一個排列中,若
2025-02-19 06:24
【總結(jié)】571上次課復(fù)習(xí)一、行列式的性質(zhì)及其推論性質(zhì)1行列式轉(zhuǎn)置,其值不變.571266853266853?根據(jù)性質(zhì)1,行所具有的性質(zhì)列也同樣具有.交換行列式的兩行,其值變號.(列)性質(zhì)2推論如果行列式中有兩行(列)對應(yīng)元素相同,則此行列式為零.性質(zhì)3用數(shù)
2025-04-29 06:43
【總結(jié)】復(fù)習(xí)變號.?行列式的性質(zhì)(常用)1.行列式兩行(列)互換,行列式的值2.將行列式的某行(列)所有元素都乘以同一個因子后加到另一行(列)的對應(yīng)元素上,行列式的值3.行列式某行(列)有公因子,可以不變.提到行列式符號的外面.??復(fù)習(xí)?行列式展開定理112211
2025-08-05 19:07
【總結(jié)】線性代數(shù)習(xí)題課(一)行列式的計算?、三階行列式的計算對二、三階行列式,可使用行列式的展開式(即對角線法則)直接計算:,2112221122211211aaaaaaaa??.332112322311312213322113312312332211333231232221
2024-10-13 13:35
【總結(jié)】第一章行列式用加減消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2??:122a?,2212221212211abxaaxaa????:212a?,1222221212112abxaaxaa??,得兩式相減消去2x一、二階行列式
2025-08-05 18:50
【總結(jié)】?TDnnaaa?2211行列式稱為行列式的轉(zhuǎn)置行列式.TDD記nnaaa?2211???nnaaa21122112nnaaa?D???2121nnaaa??nnaaa2112一、行列式
2025-05-12 10:05
【總結(jié)】行列式習(xí)題精選一、判斷下列各項是否為五階行列式的項?(包括符號)(1)-a21a34a15a23a52解:由于其中的元a21,a23在同一行,故不是五階行列式的項。(2)+a32a15a24a53a41解:將其重新排列為+a15a24a32a41a53容易看出其中的五個元都不同行,也都不同列??扇1=5,j2=4,j3=2,j4=1,j5
2025-08-05 16:27
【總結(jié)】1第一節(jié)二階與三階行列式一、二階行列式的引入二、三階行列式2?2022,HenanPolytechnicUniversity2§1二階與三階行列式二階與三階行列式第一章第一章行列式行列式一、二階行列式的引入提示:a11a22x1?a12a22x2?b1a22??a22?[a11x1?a12x2?b1]?
2025-05-02 06:09
【總結(jié)】用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2??:122a?,2212221212211abxaaxaa????:212a?,1222221212112abxaaxaa??,得兩式相減消去2x一、二階行列式的引入;21222112112
2025-07-21 17:25
【總結(jié)】第二節(jié)行列式的性質(zhì)目的要求:掌握行列式的性質(zhì),熟練運用行列式的性質(zhì)化行列式為三角行列式計算.第二節(jié)行列式的性質(zhì)1111nnnnaaDaa?復(fù)習(xí):1212!(1)ntppnpnaaa???1212!(1)nspppnn
2024-10-14 17:06
【總結(jié)】行列式按行(列)展開?對角線法則只適用于二階與三階行列式.?本節(jié)主要考慮如何用低階行列式來表示高階行列式.一、引言122331111221221333332132132231112332aaaaaaaaaaaaaaaaaa??????1
2025-05-07 00:52
【總結(jié)】第一章行列式?二階與三階行列式?排列?n階行列式?n階行列式的性質(zhì)?行列式按一行(列)展開?Cramer法則本章內(nèi)容?行列式概念的形成?行列式的基本性質(zhì)和計算方法?利用行列式來解線性方程組山東理工大學(xué)
2024-12-07 18:39
【總結(jié)】第一章行列式本章討論:1方程個數(shù)和未知數(shù)個數(shù)相同,且系數(shù)滿足特定條件的線性方程組的求解,從而得到行列式這個工具.1.引言2.排列3.n階行列式5.行列式的計算6.行列式按行(列)展開7.Cramer法則??行列式概念的形成行列式的性質(zhì)及
2024-08-25 02:01
【總結(jié)】,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa??????333231232221131211aaaaaaaaa例如??3223332211aaaaa????3321312312aaaaa????3122322113aaaaa??33312321
2025-05-10 10:27