freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

植物生理學(xué)(王忠)復(fù)習(xí)筆記(已改無錯字)

2023-07-08 19:55:13 本頁面
  

【正文】 原酶的相繼作用下還原成氨(銨)的過程。植物進行正常生命活動需要的必需的礦質(zhì)(含氮)元素有13種,它們是氮、磷、鉀、鈣、鎂、硫、鐵、銅、硼、鋅、錳、鉬、氯(也有文獻將鈉和鎳歸為必需元素)。2.試述氮、磷、鉀的生理功能及其缺素病癥。答:(1) 氮生理功能:①氮是蛋白質(zhì)、核酸、磷脂的主要成分,而這三者又是原生質(zhì)、細胞核和生物膜等細胞結(jié)構(gòu)物質(zhì)的重要組成部分。②氮是酶、ATP、多種輔酶和輔基(如NAD+、NADP+、FAD等)的成分,它們在物質(zhì)和能量代謝中起重要作用。③氮還是某些植物激素如生長素和細胞分裂素、維生素如BBBPP等的成分,它們對生命活動起調(diào)節(jié)作用。④氮是葉綠素的成分,與光合作用有密切關(guān)系。缺氮病癥:①植株瘦小。缺氮時,蛋白質(zhì)、核酸、磷脂等物質(zhì)的合成受阻,影響細胞的分裂與生長,植物生長矮小,分枝、分蘗很少,葉片小而薄,花果少且易脫落。②黃化失綠。缺氮時影響葉綠素的合成,使枝葉變黃,葉片早衰,甚至干枯,從而導(dǎo)致產(chǎn)量降低。③老葉先表現(xiàn)病癥。因為植物體內(nèi)氮的移動性大,老葉中的氮化物分解后可運到幼嫩的組織中去重復(fù)利用,所以缺氮時葉片發(fā)黃,并由下部葉片開始逐漸向上。 (2) 磷生理功能:①磷是核酸、核蛋白和磷脂的主要成分,并與蛋白質(zhì)合成、細胞分裂、細胞生長有密切關(guān)系。②磷是許多輔酶如NAD+、NADP+等的成分,也是ATP和ADP的成分。③磷參與碳水化合物的代謝和運輸,如在光合作用和呼吸作用過程中,糖的合成、轉(zhuǎn)化、降解大多是在磷酸化后才起反應(yīng)的。④磷對氮代謝有重要作用,如硝酸還原有NAD和FAD的參與,而磷酸吡哆醛和磷酸吡哆胺則參與氨基酸的轉(zhuǎn)化。⑤磷與脂肪轉(zhuǎn)化有關(guān),脂肪代謝需要NADPH、ATP、CoA和NAD+的參與。缺磷病癥:①植株瘦小。缺磷影響細胞分裂,使分蘗分枝減少,幼芽、幼葉生長停滯,莖、根纖細,植株矮小,花果脫落,成熟延遲。②葉呈暗綠色或紫紅色。缺磷時,蛋白質(zhì)合成下降,糖的運輸受阻,從而使營養(yǎng)器官中糖的含量相對提高,這有利于花青素的形成,故缺磷時葉子呈現(xiàn)不正常的暗綠色或紫紅色。③老葉先表現(xiàn)病癥。磷在體內(nèi)易移動,能重復(fù)利用,缺磷時老葉中的磷能大部分轉(zhuǎn)移到正在生長的幼嫩組織中去。因此,缺磷的癥狀首先在下部老葉出現(xiàn),并逐漸向上發(fā)展。(3)鉀生理功能:①酶的活化劑。鉀在細胞內(nèi)可作為60多種酶的活化劑,如丙酮酸激酶、果糖激酶、蘋果酸脫氫酶、淀粉合成酶、琥珀酰CoA合成酶、谷胱甘肽合成酶等。因此鉀在碳水化合物代謝、呼吸作用以及蛋白質(zhì)代謝中起重要作用。②鉀能促進蛋白質(zhì)的合成,與糖的合成也有關(guān),并能促進糖類向貯藏器官運輸。③鉀是構(gòu)成細胞滲透勢的重要成分,如對氣孔的開放有著直接的作用。缺鉀病癥:①抗性下降。缺鉀時植株莖桿柔弱,易倒伏,抗旱、抗寒性降低。②葉色變黃葉緣焦枯。缺鉀葉片失水,蛋白質(zhì)、葉綠素被破壞,葉色變黃而逐漸壞死;缺鉀有時也會出現(xiàn)葉緣焦枯,生長緩慢的現(xiàn)象,但由于葉中部生長仍較快,所以整個葉子會形成杯狀彎曲,或發(fā)生皺縮。③老葉先表現(xiàn)病癥。鉀也是易移動而可被重復(fù)利用的元素,故缺素病癥首先出現(xiàn)在下部老葉。 4.植物缺素病癥有的出現(xiàn)在頂端幼嫩枝葉上,有的出現(xiàn)在下部老葉上,為什么?舉例加以說明。 答:植物體內(nèi)的礦質(zhì)元素,根據(jù)它在植株內(nèi)能否移動和再利用可分為二類。一類是非重復(fù)利用元素,如鈣、硫、鐵、銅等;一類是可重復(fù)利用的元素,如氮、磷、鉀、鎂等。在植株旺盛生長時,如果缺少非重復(fù)利用元素,缺素病癥就首先出現(xiàn)在頂端幼嫩葉上,例如,大白菜缺鈣時心葉呈褐色。如果缺少重復(fù)利用元素,缺素病癥就會出現(xiàn)在下部老葉上,例如,缺氮時葉片由下而上褪綠發(fā)黃。5.植物根系吸收礦質(zhì)有哪些特點?答:(1)根系吸收礦質(zhì)與吸收水分是既相互關(guān)聯(lián)又相互獨立的兩個過程 相互關(guān)聯(lián)表現(xiàn)在:①鹽分一定要溶于水中,才能被根系吸收,并隨水流進入根部的質(zhì)外體,隨水流分布到植株各部分;②礦質(zhì)的吸收,降低了根系細胞的滲透勢,促進了植物的吸水。相互獨立表現(xiàn)在:①礦質(zhì)的吸收不與水分的吸收成比例;②二者的吸收機理不同,水分吸收主要是以蒸騰作用引起的被動吸水為主,而礦質(zhì)吸收則是以消耗代謝能的主動吸收為主;③二者的分配方向不同,水分主要分配到葉片用于蒸騰作用,而礦質(zhì)主要分配到當時的生長中心。(2)根對離子吸收具有選擇性 植物對同一溶液中不同離子或同一鹽的陽離子和陰離子吸收的比例不同,從而引起外界溶液pH發(fā)生變化。(3)根系吸收單鹽會受毒害 任何植物,假若培養(yǎng)在某一單鹽溶液中,不久即呈現(xiàn)不正常狀態(tài),最后死亡。這種現(xiàn)象稱為單鹽毒害。單鹽毒害無論是營養(yǎng)元素或非營養(yǎng)元素都可發(fā)生,而且在溶液很稀時植物就會受害。若在單鹽溶液中加入少量其它鹽類,這種毒害現(xiàn)象就會清除,這被稱為離子間的頡頏作用。10.試述礦質(zhì)元素在光合作用中的生理作用(可在學(xué)習(xí)第四章后思考)。答:礦質(zhì)營養(yǎng)在光合作用中的功能極為廣泛,歸納起來有以下方面:(1)葉綠體結(jié)構(gòu)的組成成分 如N、P、S、Mg是葉綠體結(jié)構(gòu)中構(gòu)成葉綠素、蛋白質(zhì)以及片層膜不可缺少的元素。(2)電子傳遞體的重要成分 如PC中含Cu、FeS中心、Cytb、Cytf和Fd中都含有Fe,因而缺Fe會影響光合電子傳遞速率。(3)磷酸基團在光、暗反應(yīng)中具有突出地位 如構(gòu)成同化力的ATP和NADPH,光合碳還原循環(huán)中所有的中間產(chǎn)物,合成淀粉的前體ADPG,合成蔗糖的前體UDPG等,這些化合物中都含有磷酸基團。(4)光合作用所必需的輔酶或調(diào)節(jié)因子 如Rubisco,F(xiàn)BPase的活化需要Mg2+;放氧復(fù)合體不可缺少Mn2+和Cl;而K+和Ca2+調(diào)節(jié)氣孔開閉;另外,F(xiàn)e3+影響葉綠素的合成;K+促進光合產(chǎn)物的轉(zhuǎn)化與運輸?shù)取?1.試分析植物失綠的可能原因。答:植物呈現(xiàn)綠色是因其細胞內(nèi)含有葉綠體,而葉綠體中含有綠色的葉綠素的緣故。因而凡是影響葉綠素代謝的因素都會引起植物失綠??赡艿脑蛴校海?)光 光是影響葉綠素形成的主要條件。從原葉綠素酸酯轉(zhuǎn)變?yōu)槿~綠酸酯需要光,而光過強,葉綠素反而會受光氧化而破壞。(2)溫度 葉綠素的生物合成是一系列酶促反應(yīng),受溫度影響。葉綠素形成的最低溫度約為2℃,最適溫度約30℃,最高溫度約40℃。高溫和低溫都會使葉片失綠。高溫下葉綠素分解加速,褪色更快。(3)營養(yǎng)元素 氮和鎂都是葉綠素的組成成分,鐵、錳、銅、鋅等則在葉綠素的生物合成過程中有催化功能或其它間接作用。因此,缺少這些元素時都會引起缺綠癥,其中尤以氮的影響最大,因此葉色的深淺可作為衡量植株體內(nèi)氮素水平高低的標志。(4)氧 缺氧能引起Mg原卟啉Ⅸ或Mg原卟啉甲酯的積累,影響葉綠素的合成。(5)水 缺水不但影響葉綠素的生物合成,而且還促使原有葉綠素加速分解。此外,葉綠素的形成還受遺傳因素控制,如水稻、玉米的白化苗以及花卉中的花葉不能合成葉綠素。有些病毒也能引起花葉病。 12.為什么在葉菜類植物的栽培中常多施用氮肥,而栽培馬鈴薯和甘薯則較多地施用鉀肥?答:葉菜類植物的經(jīng)濟產(chǎn)量主要是葉片部分,受氮素的影響較大。氮不僅是蛋白質(zhì)、核酸、磷脂的主要成分,而且是葉綠素的成分,與光合作用有密切關(guān)系。因此,氮的多寡會直接影響細胞的分裂和生長,影響葉面積的擴大和葉鮮重的增加。且氮素在土壤中易缺乏,因此在葉菜類植物的栽培中要多施氮肥。氮肥充足時,葉片肥大,產(chǎn)量高,汁多葉嫩,品質(zhì)好。鉀與糖類的合成有關(guān)。鉀肥充足時,蔗糖、淀粉、纖維素和木質(zhì)素含量較高,葡萄糖積累則較少。鉀也能促進糖類運輸?shù)劫A藏器官中,所以在富含糖類的貯藏器官(馬鈴薯塊莖和甘薯塊根)中鉀含量較多,種植時鉀肥需要量也較多。 13.為什么水稻秧苗在栽插后有一個葉色先落黃后返青的過程?答:植物體內(nèi)的葉綠素在代謝過程中一方面合成,一方面分解,在不斷地更新。水稻秧苗根系在栽插過程中受傷,影響植株對構(gòu)成葉綠素的重要礦質(zhì)元素N和Mg的吸收,使葉綠素的更新受到影響,而分解過程仍然進行。另一方面, N和Mg等礦質(zhì)元素是可重復(fù)利用元素,根系受傷后,新葉生長所需的N和Mg等礦質(zhì)元素依賴于老葉中葉綠素分解后的轉(zhuǎn)運,即新葉向老葉爭奪N和Mg等礦質(zhì)元素,這就加速了老葉的落黃,因此水稻秧苗在栽插后有一個葉色落黃過程。當根系恢復(fù)生長后,新根能從土壤中吸收N、Mg等礦質(zhì)元素,使葉綠素合成恢復(fù)正常。隨著新葉的生長,植株的綠色部分增加,秧苗返青。第四章 植物的光合作用復(fù)習(xí)思考題與答案(一)解釋名詞光合作用(photosynthesis) 通常是指綠色植物吸收光能,把二氧化碳和水合成有機物,同時釋放氧氣的過程。從廣義上講,光合作用是光養(yǎng)生物利用光能把二氧化碳合成有機物的過程。希爾反應(yīng)(Hill reaction) 希爾()發(fā)現(xiàn)在分離的葉綠體(實際是被膜破裂的葉綠體)懸浮液中加入適當?shù)碾娮邮荏w(如草酸鐵),照光時可使水分解而釋放氧氣,這個反應(yīng)稱為希爾反應(yīng)(Hill reaction) 。其中的電子受體被稱為希爾氧化劑(Hill oxidant)。光反應(yīng)(light reaction) 光合作用中需要光的反應(yīng)。為發(fā)生在類囊體上的光的吸收、傳遞與轉(zhuǎn)換、電子傳遞和光合磷酸化等反應(yīng)的總稱。 暗反應(yīng)(dark reaction) 光合作用中的酶促反應(yīng),即發(fā)生在葉綠體間質(zhì)中的同化CO2反應(yīng)。同化力(assimilatory power) ATP和NADPH是光合作用光反應(yīng)中由光能轉(zhuǎn)化來的活躍的化學(xué)能,具有在黑暗中同化CO2為有機物的能力,所以被稱為同化力。 量子效率 (quantum efficiency) 又稱量子產(chǎn)額(quantum yield),是指光合作用中吸收一個光量子所能引起的光合產(chǎn)物量的變化,如放出的氧分子數(shù)或固定的CO2的分子數(shù)。量子需要量(quantum requirement) 量子效率的倒數(shù),即釋放1個O2和還原1個CO2所需吸收的光量子數(shù)。一般認為最低量子需要量為8~10,~。光合單位(photosynthetic unit) 最初是指釋放1個O2分子所需要的葉綠素數(shù)目,測定值為2500chl/O2。若以吸收1個光量子計算,光合單位為300個葉綠素分子;若以傳遞1個電子計算,光合單位為600個葉綠素分子。而現(xiàn)在把存在于類囊體膜上能進行完整光反應(yīng)的最小結(jié)構(gòu)單位稱為光合單位。它應(yīng)是包括兩個反應(yīng)中心的約600個葉綠素分子(3002)以及連結(jié)這兩個反應(yīng)中心的光合電子傳遞鏈。它能獨立地捕集光能,導(dǎo)致氧的釋放和NADP的還原。光合膜(photosynthetic membrane) 即為類囊體膜,這是因為光合作用的光反應(yīng)是在葉綠體中的類囊體膜上進行的。紅降現(xiàn)象(red drop) 光合作用的量子產(chǎn)額在波長大于680nm時急劇下降的現(xiàn)象。雙光增益效應(yīng)或愛默生增益效應(yīng)(Emerson enhancement effect)在用遠紅光照射時補加一點稍短波長的光(例如650nm的光),則量子產(chǎn)額大增,比用這兩種波長的光單獨照射時的總和還要高。這種在長波紅光之外再加上較短波長的光促進光合效率的現(xiàn)象被稱為雙光增益效應(yīng),因這一現(xiàn)象最初由愛默生(Emerson)發(fā)現(xiàn)的,故又叫愛默生增益效應(yīng)。原初反應(yīng)(primary reaction) 指光合作用中最初的反應(yīng),從光合色素分子受光激發(fā)起到引起第一個光化學(xué)反應(yīng)為止的過程,它包括光能的吸收、傳遞與光化學(xué)反應(yīng)。原初反應(yīng)的結(jié)果使反應(yīng)中心發(fā)生電荷分離。 熒光(fluorescence)和磷光(phosphorescence) 激發(fā)態(tài)的葉綠素分子回到基態(tài)時,可以光子形式釋放能量。處在第一單線態(tài)的葉綠素分子回至基態(tài)時所發(fā)出的光稱為熒光,而處在三線態(tài)的葉綠素分子回至基態(tài)時所發(fā)出的光稱為磷光。激子傳遞(exciton transfer) 激子通常是指非金屬晶體中由電子激發(fā)的量子,它能轉(zhuǎn)移能量但不能轉(zhuǎn)移電荷。在由相同分子組成的聚光色素系統(tǒng)中,其中一個色素分子受光激發(fā)后,高能電子在返回原來軌道時也會發(fā)出激子,此激子能使相鄰色素分子激發(fā),即把激發(fā)能傳遞給了相鄰色素分子,激發(fā)的電子可以相同的方式再發(fā)出激子,并被另一色素分子吸收,這種在相同分子內(nèi)依靠激子傳遞來轉(zhuǎn)移能量的方式稱為激子傳遞。 共振傳遞(resonance transfer) 在色素系統(tǒng)中,一個色素分子吸收光能被激發(fā)后,其中高能電子的振動會引起附近另一個分子中某個電子的振動(共振),當?shù)诙€分子的電子振動被誘導(dǎo)起來,就發(fā)生了電子激發(fā)能的傳遞,第二個分子又能以同樣的方式激發(fā)第三、第四個分子,這種依靠電子振動在分子內(nèi)傳遞能量的方式稱共振傳遞。 反應(yīng)中心(reaction center) 發(fā)生原初反應(yīng)的最小單位,它是由反應(yīng)中心色素分子、原初電子受體、次級電子受體與次級電子供體等電子傳遞體,以及維持這些電子傳遞體的微環(huán)境所必需的蛋白質(zhì)等組分組成的。反應(yīng)中心色素分子(reaction center pigment) 是處于反應(yīng)中心中的一種特殊性質(zhì)的葉綠素a分子,它不僅能捕獲光能,還具有光化學(xué)活性,能將光能轉(zhuǎn)換成電能。聚(集)光色素(light harvesting pigment) 又稱天線色素(antenna pigment),指在光合作用中起吸收和傳遞光能作用的色素分子,它們本身沒有光化學(xué)活性。原初電子供體(primary electron donor) 反應(yīng)中心色素分子是光化學(xué)反應(yīng)中最先向原初電子受體供給電子的,因此反應(yīng)中心色素分子又稱原初電子供體。原初電子受體(primary electron acceptor) 直接接收反應(yīng)中心色素分子傳來電子的電子傳遞體。PSⅠ的原初電子受體是葉綠素分子(A0),PSⅡ的原初電子受體是去鎂葉綠素分子(Pheo)。光合鏈(photosynthetic chain) 定位在光合膜上的,由多個電子傳遞體組成的電子傳遞的總軌道。Z方案(Z scheme) 指光合電子傳遞途徑由兩個光系統(tǒng)串聯(lián)起來的方案。由于此光合電子傳遞途徑中的電子傳遞體按氧化還原電位高低排列時呈側(cè)寫的Z字形,故稱此方案為Z方案。非環(huán)式電子傳遞(noncyclic electron transport) 指水中的電子經(jīng)PSⅡ與PSⅠ一直傳到NADP+的電子傳遞途徑。環(huán)式電子傳遞(cyclic electron transport) 一般指PSⅠ中電子由經(jīng)Fd、PQ、Cytb6/f等電子遞體返回到PSⅠ的循環(huán)電子傳遞途經(jīng)。假環(huán)式電子傳遞(pseudocyclic electron transpo
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1