【摘要】1認識一元二次方程第1課時一元二次方程的定義北師大版九年級上冊第二章一元二次方程狀元成才路試一試一塊四周鑲有寬度相等的花邊的地毯如下圖,它的長為8m,寬為5m.如果地毯中央長方形圖案的面積為18m2,則花邊多寬?解:如果設花邊的寬為xm,那么地毯中央長方形圖案的長為
2025-03-23 16:34
【摘要】例1:如圖甲,有一張長40cm,寬25cm的長方形硬紙片,裁去角上四個小正方形之后,折成如圖乙所示的無蓋紙盒。若紙盒的底面積是450cm2,那么紙盒的高是多少?40cm25cm甲乙練習1:取一張長與寬之比為5:2的長方形紙板,剪去四個邊長為5cm的小正方形,并用它做一個無蓋的長方體形狀的包裝盒。要使包裝盒的容積為200cm3
2024-12-28 10:11
【摘要】0cbxax2???(a≠0)復習回顧1、一元二次方程的定義2、一元二次方程的一般式:3、一元二次方程的根的含義復習回顧因式分解:把一個多項式化成幾個整式的積的形式主要方法:(1)提取公因式法(2)公式法:a2-b2=(a+b)(a-b
2024-12-28 02:02
【摘要】二次函數(shù)與一元二次方程(第1課時)倍速課時學練問題:如圖以40m/s的速度將小球沿與地面成30°角的方向擊出時,球的飛行路線將是一條拋物線,如果不考慮空氣阻力,球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有關(guān)系h=20t-5
2025-01-27 12:51
【摘要】一元二次方程的應用(2)鮮花為你盛開,你一定行!ON如圖,紅點從O出發(fā),以3米/秒的速度向東前進,經(jīng)過t秒后,紅點離O的距離ON=.(1)(2)COCO=40米,紅點從C出發(fā),其他條件不變,經(jīng)過t秒后,紅點離O的距離ON=.
2024-12-21 00:43
【摘要】例1:如圖甲,有一張長40cm,寬25cm的長方形硬紙片,裁去角上四個小正方形之后,折成如圖乙所示的無蓋紙盒。若紙盒的底面積是450cm2,那么紙盒的高是多少?40cm25cm甲乙試一試:取一張長與寬之比為5:2的長方形紙板,剪去四個邊長為5cm的小正方形,并用它做一個無蓋的長方體形狀的包裝盒。要使包裝盒的容積為2
2024-12-09 01:14
【摘要】課題(1)課時教學目標1、經(jīng)歷一元二次方程的實際應用,體驗一元二次方程的應用價值.2、會列一元二次方程解應用題.教學設想本節(jié)教學的重點是列一元二次方程解應用題.例2的數(shù)量關(guān)系比較復雜,學生不容易理解,是本節(jié)教學的難點.
2024-12-29 06:17
【摘要】課題一元二次方程的解法(1)課時教學目標(1)、理解直接開平方法解一元二次方程的依據(jù)是平方根的意義。(2)、會用直接開平方法解一元二次方程。(3)、理解配方法。(4)、會用配方法解二次項系數(shù)為1的一元二次方程。教學設想[教學重點]掌握直接開平
2024-12-10 02:18
【摘要】一元二次方程的應用(1)(1)某公司今年的銷售收入是a萬元,如果每年的增長率都是x,那么一年后的銷售收入將達到______萬元(用代數(shù)式表示)(2)某公司今年的銷售收入是a萬元,如果每年的增長率都是x,那么兩年后的銷售收入將達到______萬元(用代數(shù)式表示)x)(1a??2x)(1a??x)(1a??
【摘要】一元二次方程開平方法和配方法(a=1)解法的區(qū)別與聯(lián)系.開平方法:形如x2=b(b≥0);(x-a)2=b(b≥0)。配方法:①先把方程x2+bx+c=0移項得x2+bx=-c.02???cbxxx2+bx+=-c+b2()2b2()2即:(x+
2024-12-28 09:05
【摘要】一元二次方程的應用祁東縣靈官鎮(zhèn)大同市中學龍貴華【教學目標】?1、使學生會用列一元二次方程的方法解決有關(guān)商品的銷售問題。?2、正確解方程并能根據(jù)具體問題的實際意義,檢驗結(jié)果的合理性。?3、通過用一元二次方程解決身邊的實際問題,體會數(shù)學知識應用的價值,培養(yǎng)學生應用數(shù)學的意識。【教學重點】●學
2024-12-12 02:57
【摘要】教學目標:1、會列一元二次方程解應用題;2、進一步掌握解應用題的步驟和關(guān)鍵;3、通過一題多解使學生體會列方程的實質(zhì),培養(yǎng)靈活處理問題的能力.重點:列方程解應用題.難點:會用含未知數(shù)的代數(shù)式表示題目里的中間量(簡稱關(guān)系式);會根據(jù)所設的不同意義的未知數(shù),列出相應的方程。一、復習列方程解應用題
2025-06-02 16:23
【摘要】第二章第二課時:一元二次方程Wjl321制作.一元二次方程及其解法(1)一般形式:ax2+bx+c=0(a≠0).(2)一元二次方程的四種解法:①直接開平方法:形如x2=k(k≥0)的形式均可用此法求解.②配方法:要先化二次項系數(shù)為1,然后方程兩邊同加上一次項系數(shù)的一半的平方,配成左邊是完全平
2024-11-26 18:38
【摘要】(1)第二章一元二次方程?你能為一個矩形花園提供多種設計方案嗎?回顧思考?一塊四周鑲有寬度相等的花邊的地毯如下圖,它的長為8m,寬為5m.如果地毯中央長方形圖案的面積為18m2,則花邊多寬?想一想?解:如果設花邊的寬為xm,那么地毯中央長方形圖案的長為m,寬為m,根據(jù)
2024-12-27 21:23
【摘要】第17章一元二次方程第1課時一元二次方程的應用(數(shù)字、幾何)第1課時一元二次方程的應用(數(shù)字、幾何)目標突破總結(jié)反思第17章一元二次方程知識目標知識目標第1課時一元二次方程的應用(數(shù)字、幾何)1.理解數(shù)字問題中的數(shù)量關(guān)系,能列一元二次方程解決數(shù)字問題.
2025-07-02 22:06