【摘要】第一篇:導數(shù)的應用4——構(gòu)造函數(shù)證明數(shù)列不等式例題 導數(shù)的應用 (四)——構(gòu)造函數(shù)證明數(shù)列不等式 例1(選講或練習):求證1111+++…+ln(1+n)234n+1 例2.已知函數(shù)f(x)...
2024-10-26 14:31
【摘要】第一篇:利用導數(shù)證明不等式 利用導數(shù)證明不等式 例1.已知x0,求證:xln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+¥)??紤]到f(0)=0,要證不等式變?yōu)椋簒0時,f(x)f...
2024-10-27 18:46
【摘要】第一篇:構(gòu)造一次函數(shù)證明不等式 =kx+b的圖象可知,如果f(m)0,f(n)0,則對一切x?(m,n)均有f(x)設(shè)a、b、c都是絕對值小于1的實數(shù),求證:ab+bc+ca+bc+ca=(...
2024-11-10 18:04
【摘要】第一篇:構(gòu)造函數(shù)證明不等式或比較大小 構(gòu)造函數(shù)比較大小或證明不等式(及二次求導) 1.【2012高考浙江文10】設(shè)a>0,b>0,e是自然對數(shù)的底數(shù),則() +2a=eb+3b,則ab +2...
2024-10-28 07:05
【摘要】......二輪專題(十一)導數(shù)與不等式證明【學習目標】1.會利用導數(shù)證明不等式.2.掌握常用的證明方法.【知識回顧】一級排查:應知應會,利用新函數(shù)的單調(diào)性或最值解決不等式的證明問題.比如要證明
2025-05-02 00:39
【摘要】2016廣外高三理科數(shù)學第二輪復習JGH4月7日構(gòu)造函數(shù)法證明不等式一、教學目標::利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性和最值來證明不等式.:引導學生鉆研教材,歸納求導的四則運算法則的應用,通過類比,化歸思想轉(zhuǎn)換命題,抓住條件與結(jié)論的結(jié)構(gòu)形式,合理構(gòu)造函數(shù).:通過這部分內(nèi)容的學習,培養(yǎng)學生的分析能力
2025-08-07 22:06
【摘要】第一篇:不等式證明之函數(shù)構(gòu)造法(顏秀華) 不等式證明之函數(shù)構(gòu)造法 作者顏秀華 (湖南省,長沙市第七中學,郵編410003) 【摘要】利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是...
2024-10-26 05:25
【摘要】第一篇:對構(gòu)造函數(shù)法證明不等式的再研究 龍源期刊網(wǎng)://. 對構(gòu)造函數(shù)法證明不等式的再研究 作者:時英雄 來源:《理科考試研究·高中》2013年第10期 某刊一文闡述了構(gòu)造法證明不等式的九個...
2024-10-26 17:38
【摘要】第一篇:壓軸題型訓練5-構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 函數(shù)是高中數(shù)學的基礎(chǔ),,我們可根據(jù)不等式的結(jié)構(gòu)特點,建立起適當?shù)暮瘮?shù)模型,利用函數(shù)的單調(diào)性、凸性等性質(zhì),靈活、、二次函數(shù)型: :a...
2024-10-27 17:42
【摘要】......導數(shù)題型一:證明不等式不等式的證明問題是中學數(shù)學教學的一個難點,傳統(tǒng)證明不等式的方法技巧性強,多數(shù)學生不易想到,,這為我們處理不等式的證明問題又提供了一條新的途徑,并且在近年高考題中使用導數(shù)證明不等式也時有出現(xiàn),但現(xiàn)行教材對這一問
2025-04-09 00:40
【摘要】第一篇:構(gòu)造函數(shù),妙解不等式 構(gòu) 不等式與函數(shù)是高中數(shù)學最重要的兩部分內(nèi)容。把作為高中數(shù)學重要工具的不等式與作為高中數(shù)學主線的函數(shù)聯(lián)合起來,這樣資源的優(yōu)化配置將使學習內(nèi)容在函數(shù)思想的指導下得到重組...
2024-10-31 14:49
【摘要】函數(shù)導數(shù)與不等式專題一.利用切線與導數(shù)之間的聯(lián)系解決不等式有關(guān)問題1.(2013年高考四川)已知函數(shù),其中是實數(shù).設(shè),為該函數(shù)圖象上的兩點,且.(1)指出函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)的圖象在點處的切線互相垂直,且,證明:;(3)若函數(shù)的圖象在點處的切線重合,求的取值范圍.2.(2014屆江西省新余)已知函數(shù),.(1)若曲
2025-04-08 12:16
【摘要】第一篇:構(gòu)造函數(shù)處理不等式問題 構(gòu)造函數(shù)處理不等式問題 函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問題中所提供的信息得知其本質(zhì)與函數(shù)有關(guān),該題就可考慮運用構(gòu)造函數(shù)的方法求解。構(gòu)造函數(shù),...
2024-10-31 14:46
【摘要】第一篇:構(gòu)造函數(shù)法證明不等式的八種方法 構(gòu)造函數(shù)法證明不等式的八種方法 利用導數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點。 解...
2024-10-28 04:52
【摘要】第一篇:導數(shù)證明不等式的幾個方法 導數(shù)證明不等式的幾個方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當x-1時,恒有 1-1£ln(...
2024-10-28 01:40