【摘要】函數(shù)導數(shù)與不等式專題一.利用切線與導數(shù)之間的聯(lián)系解決不等式有關問題1.(2013年高考四川)已知函數(shù),其中是實數(shù).設,為該函數(shù)圖象上的兩點,且.(1)指出函數(shù)的單調區(qū)間;(2)若函數(shù)的圖象在點處的切線互相垂直,且,證明:;(3)若函數(shù)的圖象在點處的切線重合,求的取值范圍.2.(2014屆江西省新余)已知函數(shù),.(1)若曲
2025-04-08 12:16
【摘要】第一篇:構造函數(shù)處理不等式問題 構造函數(shù)處理不等式問題 函數(shù)與方程,不等式等聯(lián)系比較緊密,如果從方程,不等式等問題中所提供的信息得知其本質與函數(shù)有關,該題就可考慮運用構造函數(shù)的方法求解。構造函數(shù),...
2024-10-31 14:46
【摘要】利用導數(shù)證明不等式的兩種通法吉林省長春市東北師范大學附屬實驗學校金鐘植岳海學利用導數(shù)證明不等式是高考中的一個熱點問題,利用導數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關的兩種通法用列舉的方式歸納和總結。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉化為證明(),進而構造輔助函數(shù),然后利用導數(shù)證明函數(shù)的單調性或
2025-07-05 04:22
【摘要】第一篇:一題多解之利用導數(shù)證明不等式問題 一題多解之利用導數(shù)證明不等式問題 構造函數(shù)證明不等式的方法: (1)對于(或可化為)左右兩邊結構相同的不等式,構造函數(shù)f(x),使原不等式成為形如f(a...
2024-10-29 14:44
【摘要】第一篇:例談利用導數(shù)證明不等式的方法 例談利用導數(shù)證明不等式的方法 廣東肇慶中學張本龍 【內容摘要】導數(shù)作為工具是一道靚麗的風景線,也是近幾年高考的一個新熱點,在某些不等式的證明中,若能及時地構...
2024-10-27 14:17
【摘要】第一篇:導數(shù)證明不等式的幾個方法 導數(shù)證明不等式的幾個方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當x-1時,恒有 1-1£ln(...
2024-10-28 01:40
【摘要】利用導數(shù)證明不等式的常見題型及解題技巧趣題引入已知函數(shù)設,證明:分析:主要考查利用導數(shù)證明不等式的能力。證明:,設當時,當時,即在上為減函數(shù),在上為增函數(shù)∴,又∴,即設當時,,因此在區(qū)間上為減函數(shù);因為,又∴,即故綜上可知,當時,本題在設輔助函數(shù)時,考慮到不等式涉及的變量是區(qū)間的兩個端點,因此,設輔助
2025-04-08 12:45
【摘要】利用導數(shù)證明不等式的兩種通法吉林省長春市東北師范大學附屬實驗學校金鐘植岳海學利用導數(shù)證明不等式是高考中的一個熱點問題,利用導數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關的兩種通法用列舉的方式歸納和總結。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉化為證明(),進而構造輔助函數(shù),然后利用導數(shù)證明函數(shù)的單調
2025-07-05 06:49
【摘要】利用導數(shù)證明不等式不等式的證明問題是中學數(shù)學教學的一個難點,傳統(tǒng)證明不等式的方法技巧性強,多數(shù)學生不易想到,,這為我們處理不等式的證明問題又提供了一條新的途徑,并且在近年高考題中使用導數(shù)證明不等式也時有出現(xiàn),但現(xiàn)行教材對這一問題沒有展開研究,,方法簡捷,操作性強,易被學生掌握。下面介紹利用單調性、極值、最值證明不等式的
2025-08-04 11:49
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質:推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-02-04 01:36
2025-08-08 19:51
【摘要】......導數(shù)題型一:證明不等式不等式的證明問題是中學數(shù)學教學的一個難點,傳統(tǒng)證明不等式的方法技巧性強,多數(shù)學生不易想到,,這為我們處理不等式的證明問題又提供了一條新的途徑,并且在近年高考題中使用導數(shù)證明不等式也時有出現(xiàn),但現(xiàn)行教材對這一問
2025-04-09 00:40
【摘要】數(shù)列與不等式的綜合問題 測試時間:120分鐘 滿分:150分解答題(本題共9小題,共150分,解答應寫出文字說明、證明過程或演算步驟)1.[2016·銀川一模](本小題滿分15分)在等差數(shù)列{an}中,a1=3,其前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),b1=1,公比為q(q≠1),且b2+S2=12,q=.(1)求an與bn;(2)證明:≤++…+&
2025-04-09 02:51
【摘要】第一篇:導數(shù)在不等式證明中的應用 龍源期刊網(wǎng)://. 導數(shù)在不等式證明中的應用 作者:唐力張歡 來源:《考試周刊》2013年第09期 摘要:中學不等式證明,只能用原始的方法,很多證明需要較高...
2024-10-31 05:20
【摘要】專題導數(shù)與不等式的解題技巧一.知識點基本初等函數(shù)的導數(shù)公式()常用函數(shù)的導數(shù)①()′=(為常數(shù));②()′=;③()′=;④′=;⑤()′=.()初等函數(shù)的導數(shù)公式①()′=;②()′=;③()′=;④()′=;⑤()′=;⑥()′=;⑦()′=..導數(shù)的運算法則()[()±()]′=;()[(
2025-04-08 05:51